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Traditional vision-and-language navigation (VLN) requires an agent to navigate to a target location solely based on visual
observations, guided by natural language instructions. Compared to this task, long-instruction VLN involves longer instruc-
tions, extended trajectories, and the need to consider more contextual information for global path planning. As a result, it is
more challenging and requires accurately aligning the instructions with the agent’s current visual observations, which is
accompanied by two significant issues. Firstly, there is a misalignment between actions. The visual observations of the agent
at each step lack explicit action-related details, while the instructions contain action-oriented words. Secondly, there is a
misalignment between global instructions and local visual observations. The instructions describe the entire navigation trajec-
tory, whereas the agent’s visual observations only provide localized information about a specific position along the trajectory.
To address these issues, this paper introduces the Action-Perception Alignment Framework (APAF). In this framework, we
first design the Action-Contextual Encoding Module (ACEM), which enriches the agent’s visual perception by encoding
potential actions with relative heading and elevation angles. We then propose the Dynamic Instruction Weighting Module
(DIWM), which adjusts the importance of instruction words based on the agent’s current visual observations, emphasizing
those words most relevant to the agent’s visual observations. Our approach significantly outperforms existing methods,
achieving state-of-the-art results with improvements of 8.5% and 4.0% in Success Rate (SR) on the long-instruction R4R and
RxR datasets, respectively.
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1 INTRODUCTION
As a task that combines vision, language, and decision-making, vision-and-language navigation (VLN) involves
guiding autonomous agents to navigate in unseen environments based on natural language instructions and
current visual observations [7, 24, 29, 75]. In early research [21, 27, 41, 49], these instructions were relatively
straightforward and brief, requiring only limited movement from the agents. These studies are inadequate for
more complex scenarios, such as navigating large indoor environments with multiple rooms or areas to pass
through [36]. To address this limitation, recent works have introduced the long-instruction VLN task [11, 32],
which requires agents to follow more complex, multi-step instructions that guide them through longer and more
complex paths.

Existing research has made significant achievements in the field of VLN. Early methods [21, 41, 49, 63] typically
used RNN models or transformer architectures to store various visual information. For example, VLN-BERT [27]
incorporates a recurrent function to maintain cross-modal state information, overcoming challenges in adapting
BERT to decision-making process of VLN. ADAPT [41] uses CLIP for cross-modality alignment and introduces
a modality alignment loss and sequential consistency loss, enabling better action prediction and sequential
navigation. Recent studies [2, 13, 40, 70] have focused on integrating more features to enhance decision-making
accuracy. For instance, HAMT [11] uses a hierarchical vision transformer to integrate instruction history and
current observations. DNA [7] incorporates direction clues from instructions to improve navigation accuracy.
However, these studies are primarily designed for traditional VLN task and struggle to accurately align visual
observations with long instructions. This makes it difficult to make correct decisions when directly applied to
long-instruction VLN.

bed
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room
room

left 

turn 

right 

turn

Long Instruction: facing towards a bed … take a left turn, you are now in the 

living room … take a right turn, you will be entered into a other room …

？ ？

(a) The absence of action information in visual observations
results in challenges in aligning visual and linguistic data.

A trajectory instruction: You find yourself in a room, facing towards the glass

window. … from the open door take a right and walk through the narrow zone … Now

you're facing a brown open door which has a number 342 on it.

The observations of the agent at step 𝑡

Global Text Local Image

(b) Global instructions and local visual observations lead to
difficulties in aligning text and images

Fig. 1. The difficulties of aligning visual and textual information in the long-instruction scene

In long-instruction VLN, the agent must understand longer instructions and leverage more contextual informa-
tion for global path planning. In this process, how to align the agent’s visual observations with the extended
instructions is a significant challenge, which involves two key issues. Firstly, there is a misalignment between
actions. As illustrated in Fig. 1a, textual instructions typically involve references to rooms, objects, and actions.
However, the visual observations predominantly capture only room and object features, with action-related
features often underutilized or absent. This gap results in an incomplete modality alignment, as the critical action-
related context present in the instructions is not reflected in the visual input. Secondly, there is a misalignment
between global instructions and local visual observations. As demonstrated in Fig. 1b, while the instruction
provides a comprehensive trajectory from start to destination, the agent’s visual perception is inherently localized,
capturing only a snapshot of the environment at each step. This discrepancy between the global instruction and
the agent’s limited, local visual information further complicates the alignment between these two modalities.
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To address these issues of long-instruction VLN, we propose the Action-Perception Alignment Framework
(APAF). In this framework, we first design the Action-Contextual Encoding Module (ACEM). It enhances the
agent’s visual perception by incorporating potential action information and encoding a range of possible actions
(e.g., turning left, moving forward) into a feature space. These action features are then integrated with the visual
data, providing a richer and more comprehensive representation of the environment. This fusion ensures that
both visual information and action-related components of the instructions are better aligned, supporting more
informed decision-making at each step. Then we propose the Dynamic Instruction Weighting Module (DIWM). It
ensures dynamic alignment between the global instructions and the agent’s local observations. By applying a
dynamic attention mechanism, DIWM adjusts the weighting of instruction words based on the agent’s current
visual observations, including its surroundings, objects, and possible actions. This process ensures that the most
relevant words of the instruction are emphasized, helping the agent focus on the aspects of the instruction
that directly correlate with its immediate visual perception. Through continuous updates to the instructions
in response to environmental changes, DIWM facilitates a more effective alignment of the agent’s visual and
linguistic inputs. Our primary contributions can be summarized as follows:

• To the best of our knowledge, we are the first to address the misalignment between textual and visual
information in long-instruction VLN, significantly enhancing the agent’s abilities in path planning and
decision-making.

• We design the Action-Perception Alignment Framework (APAF), which consists of two key modules,
ACEM and DIWM. The former enriches the visual representation by incorporating action information
that is often overlooked in existing methods. The latter adjusts the importance of instruction words at
each time step, ensuring better alignment between the agent’s visual observations and the instructions.

• Through extensive experiments, we demonstrate the effectiveness of our method and achieve state-of-the-
art results, with improvements of 8.5% and 4.0% in Success Rate on the long-instruction R4R [32] and
RxR [36] datasets, respectively.

The paper is organized as follows: Section 2 reviews the most relevant prior research. In Section 3, we introduce
the Action-Perception Alignment Framework. Our experimental results are presented in Section 4, and Section 5
concludes the paper with a discussion on future research directions.

2 RELATED WORK

2.1 Vision-and-Language Navigation
With technological advancements, VLN has garnered increasing attention in recent years [12, 26, 55, 61, 65, 67, 71].
Early works [21, 74] in VLN predominantly employed RNNs to store historical actions and observations into
the hidden states, facilitating accurate decision-making. To effectively capture the layouts of environments,
Wang et al. [65] utilize a structured scene memory that precisely stores sensory information during navigation.
Tan et al. [63] introduce a dual-phase training method aimed at boosting the agent’s ability to generalize. Ma
et al. [47] employ a progress monitor as an adaptive heuristic to aid in navigation search. With the advent of
transformer-based architectures [17, 34], there has been a significant shift in how information is preserved and
processed in VLN tasks. PRESS [39] introduces a stochastic sampling method aimed at narrowing the substantial
disparity between expert-driven actions during training and actions sampled during testing. VLN-BERT [27]
integrates recurrent units within a transformer framework to facilitate action prediction. Zhao et al. [72] proposes
to explicitly predict the target location along a reference path to reduce the gap between agent performance and
the oracle success rate in VLN.

Moreover, recent studies have also explored the use of topological graph [3, 9, 13, 16, 40, 51] and semantic
maps [2, 4, 8, 10, 23, 28, 31, 45, 64, 70] to explicitly preserve various environmental information. ETPNav [3]
conducts real-time topological mapping of environments by autonomously organizing predicted waypoints on a
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traveled route. BEVBert [2] constructs a local semantic map to systematically consolidate partial observations
and eliminate redundancies, concurrently representing navigational dependencies within a comprehensive global
topological map. ACK [48] enhances both visual representation and action reasoning by incorporating common-
sense knowledge as a spatio-temporal graph, thereby improving instruction grounding in complex environments.
MiC[57] leverages large language models through an interactive prompting framework to dynamically generate
scene-aware navigation plans under high-level instructions in the REVERIE task. Additionally, data augmentation
techniques have been increasingly adopted to address the issues of dataset sparsity that often lead to model
overfitting [12, 41, 69]. AutoVLN [12] generates a substantial VLN dataset using 900 unlabeled 3D buildings
sourced from HM3D. ScaleVLN [69] further introduces a robust framework for producing extensive datasets to
train agents. However, these methods have not been optimized for the long-instruction VLN task, and performance
in such contexts is inadequate.

2.2 Visual Representations
In vision-and-language navigation, accurate decision-making heavily relies on the quality of visual representations
at each step. Most studies [40, 66] encode panoramic images viewed by the agent at its current location into
visual features, aligning these with room-related words in the instructions. Additionally, some research [13–15]
utilizes object detectors to obtain information about objects at these locations, enriching the visual data. Similarly,
both RelGraph [26] and OAAM [53] enhance visual representations by capturing the agent’s current heading and
elevation angles. Moreover, recent advancements have included constructing 2D occupancy grids or 3D point
cloud maps to extract environmental information [19, 20, 44], addressing visual feature deficiencies. ORIST [52]
incorporates room and object information and predicts the relative direction (e.g., left/right/front/back) for each
candidate based on current visual features, aiming to align with direction cues in instructions. Different them, our
method explicitly encodes the fine-grained heading and elevation angles between the agent and each candidate
viewpoint to extract precise action features. This richer, action-aware visual representation ensures more effective
alignment with action-oriented language instructions.

2.3 Textual Representations
Early studies [24, 27] in VLN treated instructions as static, remaining unchanged throughout the navigation
process. Agents were reliant on temporal models, such as LSTM or transformers, to implicitly learn which words
in the instructions were relevant to their current location [11, 41]. Some approaches have also proposed the
construction of a Language Attention Graph, where nodes represent specific entities in the instructions (e.g.,
rooms, objects, actions) and edges depict relationships between these entities [26]. ROAA [22] utilize a transformer-
encoder to develop an instruction extraction module that discriminates object and room meanings. DNA [7]
uses a direction encoder to extract directional words from the instructions. ORIST [52] encodes instructions in a
unified representation that remains fixed during navigation. In contrast, our work leverages both the agent’s
current observations and future action cues to dynamically adjust the weight of instruction words at each time
step.

3 METHOD
In long-instruction VLN, the navigation environment is represented as an undirected graph G, where nodes
represent specific viewpoints, and edges represent feasible paths between them. At the start of navigation, the
agent is initialized at a certain node in the graph, and a long instruction W = {w8 }!8=1, composed of ! words, is
provided. At each time step C , the agent receives a panoramic view V = {v1, v2, . . . , v36} of its current location,
which consists of 36 sub-images covering different viewing angles. Based on both W and V , the agent is tasked
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Fig. 2. The overall network architecture. At each time step C , our approach firstly employs two encoders to capture features
about the current rooms and objects based on visual observations. In the Action-Contextual Encoding Module, we construct
a topological map using the agent’s exploration history. We calculate the angles required for the agent to turn toward each
candidate location based on its current heading, elevation, and the spatial relationship with these points. Then these angles
are encoded as features, and an action encoder extracts the corresponding action information. During the topological map
update, the agent’s current position is updated with room and object features, while candidate points are updated using
room, object, and action features. In the Dynamic Instruction Weighting Module, we adjust the importance of instruction
words based on room, object, and action information to maintain alignment with the agent’s observations.

with selecting one of the available candidate locations as its next move or deciding to stop. The navigation is
considered successful if the agent terminates at a position within 3 meters of the ground-truth viewpoint.

3.1 Overview of Our Method
The primary goal of this paper is to ensure the accurate alignment of textual and visual features in the long-
instruction VLN task. As shown in Fig. 2, since navigation instructions typically include words related to rooms,
objects, and actions, we also extract these three types of features from the agent’s visual observations at each
time step C . First, we design a Visual Features Extraction Module to extract room and object features at time C ,
denoted as f AC and f>C , respectively. Then to obtain the action features f0C , we construct a topological graph GC ∈ G
based on the agent’s trajectory up to time step C . In this graph, gray nodes represent previously visited locations,
the brown node aC indicates the agent’s current location, and the blue nodes cC =

{
21C , 2

2
C , . . . , 2

:
C

}
represent the

candidate next locations. By calculating the angles the agent must rotate from aC to each candidate location
in cC , we encode the corresponding action features, denoted as f0C . The three features f AC , f

>
C and f0C are then
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concatenated to form the current visual feature f E
C , which is used to update the corresponding nodes in GC ,

resulting in the updated topological map GC+1.
In addition, the instruction W corresponds to the entire navigation trajectory, while f E

C only represents visual
information at time C , creating a potential gap. To this end, we first encode W into a feature fF and then utilize
the Dynamic Instruction Weighting Module to generate a new instruction feature fF

C by weighting each token
in fF using an attention mechanism. Finally, the visual feature f E

C , the updated instruction feature fF
C , and the

topological graph GC+1 are fed into a decision network to predict the next action.

3.2 Vision Feature Extraction
At time step C , the agent receives a panoramic image of its current location, consisting of 36 views. We first utilize
the image encoder from CLIP/B16 [59] to extract features for each view, as formulated below:

f 8A = CLIP (v8 ) , (1)

where v8 denotes the image from the i-th view. Next, we compute the view embedding for each image and add it
to the corresponding feature f 8A . The resulting features are then passed into a room encoder. Specifically, the view
embedding is represented as:

e8E = Embedding (8) , (2)
and the room feature f AC is calculated as:

f AC =
{
6A

(
f 8A + e8E

)}36
8=1 , (3)

where f AC ∈ R!A ×� , and !A and � denote the number of views and feature dimension, respectively. Here, 6A
represents the room encoder, which is implemented using a transformer-based architecture.

Similarly, to obtain object features, we first apply an object detection network [60] to the panoramic image
V to generate bounding boxes {b8 }<8=1 for all objects, where< represents the total number of objects in the
panoramic image. Based on these bounding boxes, we crop the corresponding object images {o8 }<8=1. Following
the same approach as in eq. (1), we extract feature f 8> for each object, denoted as:

f 8> = CLIP (o8 ) . (4)

Next, we compute the positional embedding e8
1
for each object’s bounding box using a fully connected layer,

formulated as:
e8
1
= FC

(
108 , 1

1
8 , 1

2
8 , 1

3
8

)
, (5)

where b8 =
(
108 , 1

1
8 , 1

2
8 , 1

3
8

)
represents the coordinates of the top-left and bottom-right corners of the i-th bounding

box. Finally, we combine f 8> and e8> , and pass them into the object encoder to obtain the object features f>C :

f>C =
{
6>

(
f 8> + e8

1

)}<
8=1 , (6)

where f>C ∈ R!>×� , with !> denoting the number of detected objects. Here, 6> represents the object encoder,
which shares the same transformer-based architecture as the room encoder 6A .

3.3 Action-Contextual Encoding
The features obtained in Section 3.2 are primarily aligned with room- and object-related words in the instructions,
leaving many action-related words without corresponding visual representations. To address this issue and enrich
the visual features with corresponding action information, we calculate the angles that the agent must rotate
from its current position to each candidate location in the topological map GC .

As shown in Fig. 3, for the path from the current position =1 to any candidate position =4, we need to calculate
the angles the agent must rotate when moving between two consecutive points along the path. Suppose the
agent moves from node =1 to node =2, with the coordinates of these two points being (G1, ~1, I1) and (G2, ~2, I2),
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n1 to n4
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𝜃

𝜙

𝜃′

𝜙′
n2

n3

n1

n2

n1

Fig. 3. For the path from the agent’s current position =1 to a candidate position =4, we compute the relative heading \ ′

and elevation q ′ between adjacent nodes along the path. These relative angles are then combined with the agent’s current
heading \ and elevation q to obtain the corresponding embeddings.

respectively. The current heading and elevation angles of the agent are denoted as \ and q respectively. To
compute the required relative heading angle Δ\ , the formula is given as:

\ ′ = ? (arctan2 (G2 − G1, ~2 − ~1)) , (7)

Δ\ = ((\ ′ − \ ) + \<0G ) mod \<0G , (8)
where ? (·) converts the angle from radians to degrees, \ ′ represents the heading angle between the two nodes,
and \<0G is a positive integer. Similarly, to obtain the relative elevation angle Δq , the formula is:

q ′ = ?

(
arctan2

(
I2 − I1,

√
(G2 − G1)2 + (~2 − ~1)2

))
, (9)

Δq = max (−q<0G ,min (q ′ − q, q<0G )), (10)
where q ′ is the elevation angle of the adjacent nodes, and q<0G indicates the max value of relative elevation.

After getting the relative heading and elevation angles, we update \ and q to \ ′ and q ′, respectively. Subse-
quently, we continue calculating the relative heading and elevation angles for the remaining consecutive points
along the path as shown in eq. (7) to eq. (10). This results in two sets of angles, ΔΘ = {Δ\1,Δ\2, · · · ,Δ\A } and
ΔΦ = {Δq1,Δq2, · · · ,ΔqA }, representing the relative heading and elevation angles for the entire path, where A
denotes the number of edges along the path.

We then derive the action features for the path by embedding these angle sequences, formulated as:

e80 = Embedding (ΔΘ) + Embedding (ΔΦ) , (11)

where 480 represents the embedding features for the i-th path. These features are then passed through an action
encoder to generate the final action features:

f08C = AvgPooling
(
60

(
e80

) )
, (12)

f0C =
[
f01C ,f02C , · · · ,f0=C

]
, (13)

where f0C ∈ R!=×� , with != denoting the number of candidate positions the agent can reach. Here, 60 represents
an action encoder.

After obtaining all three types of features in Section 3.2 and Section 3.3, we concatenate them to form the
feature f E

C =
[
f AC ,f

>
C ,f

0
C

]
∈ R(!A+!>+!= )×� . Then it is used to update GC , resulting in a new topological map GC+1.

Specifically, for the current position of the agent, we use f AC and f>C as its features. For the candidate point 28C , we
use the room feature f A ′C ∈ f AC and the object feature f>′C ∈ 5 >C , both corresponding to those visible view, along
with the action feature f08C as its features.
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3.4 Dynamic Instruction Weighting
Sincef E

C represents information at only a specific time step C , and the instructionW describes the entire navigation
trajectory, f E

C corresponds to a subset of words in W. In this paper, based on the previously obtained visual
and action features, we apply an attention mechanism to compute the importance of each word at the current
time step. By dynamically updating the instruction, this approach helps reduce the gap and improve navigation
accuracy.

First, we obtain the embedding e8F for each word in the instruction and its corresponding positional encoding
e8? . These embeddings are then passed through the text encoder to obtain the instruction feature fF ∈ R!×� , as
shown in the following formula:

fF = Text-Encoder
(
e8F + e8?

)
. (14)

Next, we apply an attention mechanism based on the visual feature f E
C to calculate the weight �C of each word

at the current time step:

�C = softmax

(
f E
C (fF))
√
�

)
. (15)

We then perform max pooling on �C to obtain the final attention weights �′
C :

�′
C = MaxPooling(�C ) . (16)

Finally, the instruction feature at the current time step C , denoted as fF
C ∈ R!×� , is computed as:

fF
C =

{
�′
C (8) · fF (8)

}!
8=1 . (17)

3.5 Action Prediction
We follow DUET [13] for action prediction. In the graph GC+1, each node stores the room type, object features, and
action-related information observed at that location. During decision-making, the agent uses these node features
to predict the probability of moving to each candidate node. Specifically, for all candidate nodes 2C+1 ∈ GC+1,
we use a Coarse-scale Cross-modal Encoder to predict the probability that the agent reaches each node. This
prediction is based on each candidate node’s stored features and the current instruction feature fF

C , resulting in a
probability set s = {B0, B1, B2, . . . , B:1 }, where :1 denotes the number of candidate nodes. For the agent’s adjacent
nodes at time C , we apply a Fine-scale Cross-modal Encoder, which takes as input the instruction feature fF

C and
the visual feature f E

C . It outputs a probability set q = {@0, @1, @2, . . . , @:2 } representing the likelihood of reaching
each adjacent node. Finally, the coarse-scale and fine-scale probabilities s and q are fused to produce the final
navigation distribution. The agent selects the node with the highest probability as the next step.

3.6 Training and Inference
3.6.1 Pretraining. Following prior work in the field [25, 35, 51], the benefits of pretraining transformer-based
models for VLN tasks are well-documented. In our approach, we adopt two auxiliary tasks to pretrain the proposed
model.

Masked Language Modeling (MLM). MLM is a widely adopted auxiliary task for pre-training BERT-like mod-
els [17]. In the context of long-instruction VLN, MLM is used to predict masked words W< by leveraging
contextual information from the unmasked words W\< , along with the visual features f E

C , instruction features
fF
C , and the topological map GC+1. Specifically, we randomly mask 15% of the tokens in the input instruction and

extract features as described in previous sections. These extracted features are then passed into the MLM head,
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which consists of two fully connected layers. The objective of the task is to minimize the negative log-likelihood
as follows:

!MLM = −E(W,)∼D logP[

(
W< |W\<,f

E
C ,f

F
C ,GC+1

)
(18)

where D represents the training dataset, refers to the agent’s trajectory, and [ is the learnable parameters.

Single-step Action Prediction (SAP). In the SAP task [11], the agent is tasked with predicting its next action
based on the preceding steps. The task is optimized via a cross-entropy loss:

!SAP = −E(
W,,0∗C

)
∼D logP[

(
0∗C |W,f E

C ,f
F
C ,GC+1

)
(19)

where 0∗C is the teacher action at the next step.

3.6.2 Fine-tuning and Inference. During the trajectory rollout phase of fine-tuning, we alternate between two
stages: teacher-forcing and student-forcing. In the teacher-forcing approach, as illustrated in eq. (19), the agent
consistently executes actions provided by the teacher. In contrast, during the student-forcing phase, where the
ground-truth path is unavailable, a pseudo label is generated to provide supervision. The pseudo label 0?∗C is
obtained using a pseudo-interactive demonstrator (PID) [13], which selects the pseudo action based on two
possible strategies, referred to as Strategy A and Strategy B, respectively. The former is to choose the candidate
node that minimizes the overall distance from the current position to the final destination. The latter involves
selecting the candidate node that minimizes the normalized Dynamic Time Warping (nDTW) [30] distance
between the agent’s traversed path and the target path.

At each decision step, the agent samples the next action from the predicted score distribution, with supervision
provided by either the teacher’s action 0∗C or the pseudo label 0?∗C . The loss function for student-forcing is defined
as follows:

!PID = −E(W,,0
?∗
C )∼D logP[

(
0
?∗
C | W,f E

C ,f
F
C ,GC+1

)
(20)

To train the agent effectively, we integrate supervision from both the teacher-forcing and student-forcing stages.
The final combined loss function is:

! = _!SAP + !PID (21)
where _ is a weighting factor that balances the contributions of the two loss components.

For inference, the agent predicts an action at each step and moves accordingly unless it predicts a stop action.
If the number of steps exceeds a predefined limit, the agent is forced to stop, and the location with the highest
stop probability is taken as the final position.

4 EXPERIMENTS

4.1 Datasets
In this paper, we focus primarily on the long-instruction vision-and-language navigation task. Consequently,
we evaluate our model on two existing long-instruction datasets: R4R [32] and RxR [36]. Additionally, we also
conduct experiments on a commonly used fine-grained dataset, R2R [5], to assess the generalization capability of
our model.

R2R is an indoor dataset constructed using the Matterport3D [6] simulator, featuring 90 photo-realistic houses
and 10,567 panoramic images. The dataset provides 7,189 navigation trajectories, each accompanied by three
corresponding natural language instructions. In total, it contains 21,567 unique words. Both the instructions and
trajectories are relatively short, with an average instruction length of 29 words. The average path length is 10
meters, and the agent typically needs to take 4 to 6 steps to complete the trajectory.

R4R is an extended version of the R2R dataset, designed to address long-instruction navigation task. It is created
by concatenating two adjacent R2R trajectories in a tail-to-head manner, resulting in longer paths. Consequently,
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R4R features both longer instructions and more complex trajectories. Additionally, the trajectories are less biased,
as they are not necessarily the shortest path between the start and end points.

RxR highlights the importance of language in VLN by addressing path biases and providing richer descriptions
of visible entities compared to R2R. It includes longer navigation paths, with each path spanning multiple rooms,
requiring the agent to maintain long-term context tracking throughout the task. In this paper, we utilize the all
English instructions from the RxR dataset to evaluate our model.

4.2 Evaluation Metrics
To evaluate the effectiveness of our approach against prior methods, we employ the standard evaluation metrics
commonly used in visual-and-language navigation tasks, as described in [5, 54]. These metrics include: (1)
Trajectory Length (TL), which measures the agent’s average path length in meters; (2) Navigation Error (NE),
representing the average distance in meters between the agent’s final position and the target; (3) Success Rate
(SR), defined as the percentage of instructions completed successfully, where NE is less than 3 meters; (4) Oracle
SR (OSR), the SR calculated assuming an optimal stop policy; (5) Success weighted by Path Length (SPL), which
adjusts SR according to the efficiency of the path; (6) Coverage weighted by Length Score (CLS), which evaluates
the ratio of the agent’s traversed path that overlaps with the optimal path; (7) Normalized Dynamic TimeWarping
(nDTW), which measures the alignment between the agent’s trajectory and the ground-truth path and (8) Success
rate weighted normalized Dynamic Time Warping (SDTW), which adjusts nDTW by factoring in the SR. For all
metrics except TL and NE, higher values indicate better performance.

4.3 Implementation Details
4.3.1 Model Architectures. The Faster-RCNN model used for extracting object features was pre-trained on the
COCO [42] dataset. The room, object, and action encoders all consist of two layers of transformer networks. The
text encoder follows the configuration from DUET [13], comprising a 9-layer transformer structure. The method
for Action Prediction is also consistent with DUET [13]. For the R2R and R4R datasets, the model is initialized
using a pre-trained LXMERT [62] model, while for the RxR dataset, a pre-trained RoBERTa [46] model is used for
initialization.

4.3.2 Training Details. For pre-training, we set the batch size to 32 and use 4 NVIDIA RTX 3090 GPUs, with a
learning rate of 54−4 and a total of 200k iterations. During fine-tuning, the batch size is reduced to 4, the learning
rate is set to 14−5, and the number of iterations is 200k. The instruction feature fF is updated at every time step.
The update is based on current visual observations, including room types, objects, and action-related information.
We adopt the Adam optimizer without weight decay and without learning rate warm-up. Gradient clipping is
applied with a maximum norm of 40. The dropout rate in the transformer layers is set to 0.5. The dimension �

of both the feature fF
C and f E

C is denoted as 768. During navigation, the maximum number W of steps the agent
can take is set to 20. The maximum values of the angles \<0G and q<0G are 360 and 30, respectively. For the R4R
dataset, the agent’s next candidate node is chosen from any node in the topological map, whereas for the R2R and
RxR datasets, only unvisited nodes are considered as candidate nodes. In the R2R dataset, we generate pseudo
labels using Strategy A, with _ set to 0.15. For the R4R and RxR datasets, Strategy B is employed, and _ is set to
0.8.

4.4 Performance Comparison
We present the comparisons with previous state-of-the-art approaches on the R4R, RxR, and R2R datasets. The
primary metrics for each dataset are emphasized in bold.

As shown in Table 1 and Table 2, we conducted experiments on two long-instruction datasets, R4R and RxR.
The results indicate that our model demonstrates significant improvements across all metrics. On the R4R dataset,
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Table 1. Comparison with state-of-the-art methods on the R4R dataset. † indicates results reproduced under the same
parameter settings as the original method. For our method, we conduct 5 repeated runs using the runtime timestamp as the
random seed, and report the mean and standard deviation of the results.

Methods Validation Seen Validation Unseen
NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

Speaker-Follower [21] 5.35 51.9 37.3 46.4 - - 8.47 23.8 12.2 29.6 - -
RCM-a (goal) [74] 5.11 55.5 32.3 40.4 - - 8.45 28.6 10.2 20.4 - -
RCM-a (fidelity) [74] 5.37 52.6 30.6 55.3 - - 8.08 26.1 7.7 34.6 - -
RCM-b (goal) [30] - - - - - - - 28.7 15.0 33.4 26.9 11.4
RCM-b (fidelity) [30] - - - - - - - 28.5 21.4 35.4 30.4 12.6
PTA (high-level) [37] 4.54 58 39 60 58 41 8.25 24 10 37 32 10
EGP [16] - - - - - - 8.00 30.2 - 44.4 37.4 17.5
SSM [65] 4.60 63 - 65 56 44 8.27 32 - 53 39 19
RelGraph [26] 5.31 52 46 55 62 50 7.43 36 26 41 47 34
RecBERT [27] - - - - - - 6.67 43.6 - 51.4 45.1 29.9
HAMT [11] - - - - - - 6.09 44.6 - 57.7 50.3 31.8
HAMT † 5.44 53.7 50.7 67.5 61.9 44.9 6.69 40.7 38.3 58.9 50.6 30.3
LANA [68] - - - - - - - 43.2 - 59.7 52.3 31.7
ScaleVLN [69] - - - - - - 6.09 44.2 - 59.6 52.8 32.7
ScaleVLN † 5.36 53.6 48.8 64.0 57.7 41.9 5.90 49.1 43.4 59.0 53.2 35.8
BSG [45] - - - - - - 6.12 47 - 59 53 34
VER [44] - - - - - - 6.10 47 - 61 54 33

Ours 3.29
±0.099

69.2
±1.31

65.0
±1.00

69.3
±1.23

66.6
±0.89

53.9
±1.28

4.97
±0.088

55.5
±1.21

51.1
±1.45

62.3
±0.43

57.6
±1.06

40.3
±0.90

Table 2. Comparison with state-of-the-art methods on the RxR dataset using English instructions. For our method, we
conduct 5 repeated runs using the runtime timestamp as the random seed, and report the mean and standard deviation of
the results.

Methods Validation Seen Validation Unseen
SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

EnvDrop [63] 48.1 44 61 57 40 38.5 34 54 51 32
Syntax [38] 48.1 44 61 58 40 39.2 35 56 52 32
SOAT [50] - - - - - 44.2 - 54.8 36.4
HOP [55] 49.4 45.3 - 58 40 42.3 36.3 - 52 33
HOP+ [56] 53.6 47.9 - 59 43 45.7 38.4 - 52 36
FOAM [18] - - - - - 42.8 38.7 - 54.1 35.6
ADAPT (ResNet152) [41] 52.7 47.0 61.3 58.5 42.9 46.7 40.3 56.6 53.6 37.3
ADAPT (CLIP) [41] 50.3 44.6 59.6 56.3 40.6 46.9 40.2 57.2 54.1 37.7
GOAT [66] 74.1 68.1 - 71.0 61.4 68.2 61.7 - 67.1 56.6

Ours 76.5
±0.75

71.2
±0.24

75.2
±0.56

75.4
±0.55

67.1
±0.27

72.2
±0.54

65.0
±0.24

70.3
±0.37

70.3
±0.22

60.8
±0.24

compared to the current state-of-the-art method, VER, we observe improvements of 8.5%, 3.6%, and 7.3% in
the SR, nDTW, and SDTW metrics on the validation unseen split, respectively. These findings suggest that our
approach enables the agent to more accurately follow instructions and efficiently adapt to the long-instruction
vision-and-language navigation task. The results on the RxR dataset further corroborate this effectiveness.
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Table 3. Comparison with state-of-the-art methods on the R2R dataset. For our method, we conduct 5 repeated runs using
the runtime timestamp as the random seed, and report the mean and standard deviation of the results.

Methods Validation Seen Validation Unseen Test Unseen
TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑

Seq2Seq [5] 11.33 6.01 53 39 - 8.39 7.81 28 21 - 8.13 7.85 27 20 -
Speaker-Follower [21] - 3.36 74 66 - - 6.62 45 36 - 14.82 6.62 - 35 28
RCM [74] 10.65 3.53 75 67 - 11.46 6.09 50 43 - 11.97 6.12 50 43 38
SSM [65] 14.70 3.10 80 71 62 20.70 4.32 73 62 45 20.40 4.57 70 61 46
EnvDrop [63] 11.00 3.99 - 62 59 10.70 5.22 - 52 48 11.66 5.23 59 51 47
PREVALENT [25] 10.32 3.67 - 69 65 10.19 4.71 - 58 53 10.51 5.30 61 54 51
ORIST [52] - - - - - 10.90 4.72 - 57 51 11.31 5.10 - 57 52
RelGraph [26] 10.13 3.47 - 67 65 9.99 4.73 - 57 53 10.29 4.75 61 55 52
NvEM [1] 11.09 3.44 - 69 65 11.83 4.27 - 60 55 12.98 4.37 66 58 54
AirBert [24] 11.09 2.68 - 75 70 11.78 4.10 - 62 56 12.41 4.13 - 62 57
VLNBERT [27] 11.13 2.90 - 72 68 12.01 3.93 - 63 57 12.35 4.09 70 63 57
MARVAL [33] 10.60 2.99 - 73 69 10.15 4.06 - 65 61 10.22 4.18 67 62 58
EnvMix [43] 10.88 2.48 - 75 72 12.44 3.89 - 64 58 13.11 3.87 72 65 59
HAMT [11] 11.15 2.51 - 76 72 11.46 2.29 - 66 61 12.27 3.93 72 65 60
SnapEnsemble [58] - - - - - 12.05 3.63 - 67 60 12.71 3.82 - 65 60
HOP+ [56] 11.31 2.33 - 78 73 11.76 3.49 - 67 61 12.67 3.71 - 66 60
TD-STP [73] - 2.34 83 77 73 - 3.22 76 70 63 - 3.73 72 67 61
DUET [13] - - - - - 13.94 3.31 - 72 60 14.73 3.65 - 69 59
DNA [7] - 3.20 77 69 65 - 4.93 61 52 44 - 5.15 60 53 46
KERM [40] 12.16 2.19 - 79.73 73.79 13.54 3.22 - 71.95 60.91 14.60 3.61 - 69.73 59.25
BEVBert [2] 13.56 2.17 88 81 74 14.55 2.81 84 75 64 15.87 3.13 81 73 62
GridMM [70] - - - - - 13.27 2.83 - 75 64 14.43 3.35 - 73 62
ScaleVLN [69] 11.90 2.16 87 80 75 12.40 2.34 87 79 70 14.27 2.73 83 77 68
VER [44] - - - - - 14.83 2.80 - 76 65 15.23 2.74 - 76 66
GOAT [66] - 1.79 88.64 83.74 79.48 - 2.40 84.72 77.82 68.13 - 3.04 80.35 74.57 64.94

Ours 12.80
±0.47

2.01
±0.043

87.79
±0.99

81.88
±0.50

75.84
±0.58

13.20
±0.52

2.27
±0.059

87.87
±0.70

80.19
±0.54

71.53
±1.10

13.97
±0.71

2.47
±0.052

85.02
±0.96

78.32
±0.14

69.83
±0.52

Additionally, we evaluated our model on a conventional fine-grained dataset, R2R. As shown in Table 3, we
find that the improvements in key metrics, namely SR and SPL, were not as pronounced compared to existing
methods. In relation to the ScaleVLN approach, our model only achieves increases of 1.32% and 1.83% in these two
metrics on the test splits. We believe this limited enhancement is attributable to the relatively short instructions
and trajectories present in the R2R dataset, which makes it easier for the agent to comprehend the instructions
and align them with visual observations. Consequently, the features from both modalities have already aligned
effectively in these methods, resulting in minimal improvement from the modules we designed.

4.5 Ablation Study
In this section, we demonstrate the contributions of each module within our model through experimental analysis.
Unless otherwise specified, all experiments are conducted on the validation unseen split of R4R dataset.

4.5.1 Different types of features. We conducted experiments to analyze how different types of features affect agent
navigation capabilities. As demonstrated in Table 4, we found that both object and action features significantly
enhance the navigation ability of agents. Specifically, the inclusion of these features led to increases of 4.1% in
SR and 3.2% in nDTW respectively, as shown in the last row of Table 4. Moreover, object and action features
make distinct contributions to navigation improvements, detailed in the second and third rows of the table. The
former primarily increases the success rate of navigation, enhancing the SR metric by 3.7%. Conversely, the
latter predominantly improves the ability of agents to follow instructions, resulting in a 2.6% enhancement in the
nDTW metric.
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Table 4. A comparison examining how various feature types influence agent navigation. 5 >C and 5 0C represent the object and
action features, respectively at time C . All experiments do not use the Dynamic Instruction Weighting Module.

5 >C 5 0C NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑
× × 5.66 50.1 45.9 60.5 52.0 35.2
Ø × 5.35 53.8 47.0 60.5 53.4 37.8
× Ø 5.47 52.5 46.4 61.6 54.6 38.2
Ø Ø 5.21 54.2 48.3 61.1 55.2 38.5

Table 5. The influence of Dynamic Instruction Weighting Module on agent navigation. 5 FC indicates whether the updated
instruction features are utilized to guide the agent. The term “top-k words” refers to the use of the k most weighted words
from 5 FC to assist the agent in navigation.

5 FC Top-k words NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑
× - 5.21 54.2 48.3 61.1 55.2 38.5
Ø 3 5.82 53.1 46.8 59.8 54.1 37.5
Ø 5 5.34 52.5 47.3 58.5 54.7 37.3
Ø 10 5.32 53.6 48.1 58.2 54.9 38.1
Ø 20 5.16 56.0 48.6 60.8 55.5 39.5
Ø 30 5.17 54.9 49.5 61.6 55.3 39.0
Ø all 5.02 55.5 48.7 62.1 56.3 39.9

4.5.2 Influence of Dynamic InstructionWeightingModule. Table 5 illustrates the impact of the Dynamic Instruction
Weighting Module on navigation performance. Data from the first and last rows indicate that the use of this
module leads to significant improvements in the three primary metrics SR, nDTW, and SDTW. Additionally, we
explored the performance of the agent when only the : words with the highest weights are used as instructions.
Results from Table 5 show that when : is set too low, the agent’s success rate decreases. As : increases, the agent’s
performance gradually improves. This suggests that words that are not directly related to the current location are
not entirely without effect. They can provide rich contextual information that aids in accurate navigation.

Table 6. The influence of view and bounding box embeddings.

view bbox NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑
× × 5.35 54.6 48.1 62.8 55.1 38.2
Ø × 5.23 54.2 47.9 61.2 55.5 38.9
× Ø 4.89 55.3 48.6 61.4 55.9 39.4
Ø Ø 5.02 55.5 48.7 62.1 56.3 39.9

4.5.3 Impact of different embeddings. In our encoding of room and object features, we incorporated view
embeddings and bounding box embeddings, respectively. To analyze the effects of these embeddings, we conducted
experiments as detailed in Table 6. The results show that after adding these two types of embeddings, there was
a notable improvement in metrics such as SR and nDTW. We also found that, compared to view embeddings,
bounding box embeddings had a greater impact on successful navigation. This could be due to object information
appearing more frequently than room information.
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Table 7. A comparison of various methods for obtaining action features.

Method NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑
( 5.21 53.8 47.1 62.0 55.2 37.7
� 5.02 55.5 48.7 62.1 56.3 39.9

4.5.4 Different methods for obtaining action features. In our experiments, we evaluated two different methods for
extracting action features, designated as methods ( and � . The former directly computes the angles between the
agent’s current position and the candidate locations, while the latter calculates the angles between all adjacent
points along the path to the candidate locations.

As demonstrated in Table 7, method � resulted in a more substantial improvement in navigation performance
compared to method ( . This is primarily because method ( directly calculates the angle between the current
position and candidate positions, which loses relevance when the distance between these points is excessive. In
contrast, method � computes angles between adjacent points, effectively avoiding this limitation. Consequently,
we adopted method � for our training regimen.

Table 8. The impact of heading and elevation angles on the agent’s performance.

heading elevation NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑
× × 5.38 53.9 47.2 60.1 53.6 37.9
× Ø 5.47 53.6 47.4 59.5 54.7 38.1
Ø × 5.07 54.8 48.1 61.8 56.1 38.6
Ø Ø 5.02 55.5 48.7 62.1 56.3 39.9

4.5.5 The influence of heading and elevation angles for action features. Table 8 demonstrates the roles of heading
and elevation angles in computing action features. We observed that action features derived solely from the
elevation angle did not significantly enhance agent navigation. In contrast, action features obtained using
the heading angle resulted in substantial improvements of 0.9% and 2.5% in SR and sDTW, respectively. We
hypothesize that this is because instructions typically contain words related to left and right turns, which are
associated with the heading angle, whereas words related to upward and downward movements, linked to the
elevation angle, are less frequent. Finally, when both angles were used together to calculate action features, there
was a further enhancement in navigation performance.

4.5.6 Different strategies of generating pseudo action. During the fine-tuning phase, we employed two methods
to generate pseudo labels. Table 9 shows the performance of these two methods across three different datasets.
We observed that for long-instruction datasets, such as R4R and RxR, using Strategy B for pseudo label generation
yielded better results, particularly in terms of improvements in the nDTW and SDTW metrics. This indicates
that this strategy helps the agent follow the instructions more effectively and reduces the confusion caused by
lengthy instructions. On the other hand, for standard datasets like R2R, Strategy A performed better, enabling the
agent to learn the shortest path from the starting point to the goal more effectively.

4.5.7 The impact of instruction processing methods on navigation. As shown in Table 10, we conducted an
experiment to compare two different instruction processing methods. In method" , the long instruction is divided
into multiple shorter instructions based on periods and provided sequentially. In method # , the agent is provided
with the entire long instruction directly. We observed that method " resulted in a significant performance drop
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Table 9. Different strategies of generating pseudo action. We conducted experiments on the validation unseen split of R4R,
RxR and R2R datasets

Dataset Strategy NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

R4R A 5.36 53.1 49.6 54.0 50.2 36.4
B 5.02 55.5 48.7 62.1 56.3 39.9

RxR A 3.90 70.8 59.5 65.2 63.4 55.4
B 3.62 72.1 65.1 70.9 70.7 60.7

R2R A 2.29 80 70 73.2 74.0 67.8
B 2.40 78 69 72.7 73.6 65.9

Table 10. The impact of instruction processing methods on navigation. We conducted experiments on the validation unseen
split of R4R, RxR and R2R datasets

Dataset Method NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

R4R " 9.73 14.3 11.9 50.6 36.9 9.1
# 5.02 55.5 48.7 62.1 56.3 39.9

RxR " 9.60 34.1 24.6 38.9 31.0 21.5
# 3.62 72.1 65.1 70.9 70.7 60.7

R2R " 3.80 64.8 46.4 53.7 50.7 43.1
# 2.29 80 70 73.2 74.0 67.8

compared to method # . This is because splitting the long instruction into shorter segments may cause the model
to lose the contextual information required for global path planning. As a result, the agent may fail to recognize
its location errors, leading to incorrect decisions. Without the global navigation context, the agent becomes
overly reliant on local information, which increases the likelihood of abandoning the task when errors occur.
This ultimately reduces the agent’s ability to correct mistakes. Additionally, we also found that the decline in
SR on the R2R dataset was much smaller compared to the two long-instruction datasets, R4R and RxR. This
further suggests that the additional contextual information provided by longer instructions aids the agent in
more accurately navigating.

4.6 Quantitative experiments
In this section, we conduct an experimental analysis of several hyperparameter settings used during the experi-
ments, identifying the optimal configurations.

Table 11. The effect of the transformer block count in the room, object, and action encoders. The experiment was finished on
the validation unseen split of R4R dataset.

Number of blocks NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑
1 5.41 52.9 46.8 58.9 54.4 38.1
2 5.02 55.5 48.7 62.1 56.3 39.9
4 4.94 55.9 49.1 60.1 55.7 39.2
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4.6.1 The number of blocks in three encoders. Table 11 presents the impact of using different numbers of
transformer blocks for the room, object, and action encoders on the agent’s navigation performance. As shown
in the table, when only one transformer block is used, the agent’s navigation success rate is suboptimal due
to the limited number of parameters. However, when the number of blocks is increased to 2 or 4, navigation
performance improves significantly. To reduce computational cost, we opted to use 2 transformer blocks during
training.

Table 12. The impact of the value of W on agent navigation. We conduct experiments on the validation unseen split of R4R,
RxR, and R2R datasets

Dataset W NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

R4R
15 5.32 53.1 48.2 57.3 52.6 36.8
20 5.02 55.5 48.7 62.1 56.3 39.9
25 5.06 56.7 48.3 62.6 56.0 40.2

RxR
15 3.54 71.8 62.9 68.2 67.1 58.1
20 3.62 72.1 65.1 70.9 70.7 60.7
25 3.75 71.6 64.8 71.3 69.7 59.6

R2R
15 2.40 79 70 71.5 74.0 67.0
20 2.29 80 70 73.2 74.0 67.8
25 2.43 80 68 73.9 71.9 65.1

4.6.2 The maximum number of steps the agent can take. The maximum number of steps W that the agent can take
during navigation also has a significant impact on its performance. Table 12 shows the results for different values
of W . We observed that moderately increasing W , for example, from 15 to 20, leads to a noticeable improvement
in navigation success rates. This is because a larger W allows the agent to explore a wider area, increasing
the likelihood of selecting the correct destination. However, further increasing W does not result in additional
improvements and may even degrade performance. We attribute this to the fact that, with an excessively large W ,
the agent’s path becomes longer and deviates more from the ground-truth path, leading to a decline in some
performance metrics.

4.6.3 The weight of the teacher-forcing stage. As shown in eq. (21), we train the agent in the teacher-forcing
and student-forcing stages. _ is the balancing factor, where a larger _ value indicates a greater emphasis on the
teacher-forcing stage. Table 13 presents the agent’s performance on different datasets as _ varies. We found
that the impact of _ on navigation performance is significant, particularly for the nDTW and SDTW metrics.
For long-instruction datasets, a larger _ produces the best results. In contrast, for standard datasets, a smaller _
performs better. This is because, in long-instruction datasets, both the trajectories and instructions are longer
and more complex. A larger _ ensures that the agent relies more heavily on the correct path during training.
This reduces error accumulation over long sequences, enabling the agent to follow complex instructions more
accurately. For standard datasets, where the navigation paths and instructions are more straightforward, a smaller
_ allows the model to rely more on its own predictions. This better prepares it for real-world scenarios where
autonomous decision-making is required. Since the paths are shorter, error accumulation is less of an issue, and
the agent can recover from mistakes more easily.
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Table 13. The influence of the value of _ on agent navigation. All results were obtained from validation unseen split R4R,
RxR, and R2R datasets.

Dataset _ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

R4R
0.15 5.15 52.9 46.4 52.0 43.3 30.4
0.5 5.08 54.7 47.3 57.5 53.6 38.5
0.8 5.02 55.5 48.7 62.1 56.3 39.9

RxR
0.15 3.90 70.8 59.5 61.3 63.4 55.4
0.5 4.05 69.4 62.1 67.1 67.2 57.4
0.8 3.62 72.1 65.1 70.9 70.7 60.7

R2R
0.15 2.29 80 70 73.2 74.0 67.8
0.5 2.36 80 69 73.9 73.3 66.6
0.8 2.61 78 68 73.0 71.7 64.5

Walk down the stairs, and turn left to the room under the stairs and

stop in the doorway. Leave the office and take a right. Go past the

stairs, and veer right. Stop next to the statue of the creature on the

bike.

Walk down the stairs, and turn left to the room under the stairs and

stop in the doorway. Leave the office and take a right. Go past the

stairs, and veer right. Stop next to the statue of the creature on the

bike.

…, wait by the counter. Walk past the dual ovens and refrigerator

and continue forward. Wait in front of the bedroom door.

…, wait by the counter. Walk past the dual ovens and refrigerator

and continue forward. Wait in front of the bedroom door.

Walk out of the bathroom door into the hallway with red wall art.

Walk through the entry into the kitchen area. Walk passed the

counter tops and refrigerator and continue up to the rustic dining

table ahead.

Walk out of the bathroom door into the hallway with red wall art.

Walk through the entry into the kitchen area. Walk passed the

counter tops and refrigerator and continue up to the rustic dining

table ahead.

Fig. 4. The attention weights for all words in the instruction before and after using Action-Contextual Encoding Module.
These weights are depicted using a gradient scale, where blue indicates lower attention values and red corresponds to higher
values. For each example, the upper instruction represents the condition without the Action-Contextual Encoding Module,
while the lower shows the condition with the Action-Contextual Encoding Module.

4.7 Qualitative Results
4.7.1 Visualization showing the effect produced by the Action-Contextual Encoding Module. As shown in Fig. 4, we
present the attention �′

C of the agent to individual words in the instruction at a specific location. Before applying
the Action-Contextual Encoding Module, the agent primarily focuses on words related to the current visual
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Instruction: Walk forward into the next room and up the stairs. Stop at the top of the stairs. Go down the rest of the stairs and go

through the doorway at the bottom. Walk straight through the room with the guitar painting and enter the room with some chairs.

Stop after entering this room.

Fig. 5. The variation in how the agent pays attention to different words in the instruction as it moves through various
positions. Here, the attention for a phase is determined by taking the average of the attention weights for all words within
that phase. The attention is represented by a color scale ranging from blue to red, where blue indicates low attention and red
indicates high attention.

information, such as room or object names like “stairs” or “door,” while largely ignoring critical action words. This
leads to a noticeable drop in navigation success rates. However, after applying the Action-Contextual Encoding
Module, the agent begins to focus more on action-related words, such as “walk down” or “continue forward”,
effectively improving navigation accuracy. Additionally, we also observe that the agent also pays considerable
attention to certain articles, conjunctions, and prepositions in the instruction. This is likely because these words
appear alongside relevant actions and objects frequently.

4.7.2 Visualization showing the effect produced by the Dynamic Instruction Weighting Module. To more clearly
demonstrate the function of the Dynamic Instruction Weighting Module, we visualized the agent’s attention to
different words in the instruction as it moves through various positions. As shown in Fig. 5, at the beginning
of navigation, the agent primarily focuses on the first few words of the instruction. As the agent progresses,
the Dynamic Instruction Weighting Module adjusts the weighting of words in the instruction based on features
obtained at the current position. The agent gradually increases its attention to subsequent words, effectively
reducing the interference from irrelevant words during navigation.

5 CONCLUSION
In this paper, to address the misalignment between visual observations and textual instructions in the long-
instruction VLN task, we introduced the Action-Contextual Encoding Module and the Dynamic Instruction
Weighting Module. The former ensured alignment between visual features and action-related words in the
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instructions by incorporating action information into the visual observations. The latter continuously updated
the weight of each word in the instruction, allowing the agent to focus primarily on those words relevant to its
current position. Extensive experiments demonstrated that these two modules played a crucial role in improving
performance on the long-instruction VLN task. However, we also observed that our model is not able to achieve
perfect alignment between visual observations and textual instructions. Certain frequently occurring nouns
tended to receive excessive attention from the agent, even when they were not relevant to the current visual
context. In future work, we plan to further optimize the model to address this issue.
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