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Abstract—Vision-and-Language Navigation (VLN) is a chal-
lenging task where an agent is required to navigate to a
natural language described location via vision observations. The
navigation abilities of the agent can be enhanced by the relations
between objects, which are usually learned using internal objects
or external datasets. The relationships between internal objects
are modeled employing graph convolutional network (GCN) in
traditional studies. However, GCN tends to be shallow, limiting its
modeling ability. To address this issue, we utilize a cross attention
mechanism to learn the connections between objects over a
trajectory, which takes temporal continuity into account, termed
as Temporal Object Relations (TOR). The external datasets have
a gap with the navigation environment, leading to inaccurate
modeling of relations. To avoid this problem, we construct
object connections based on observations from all viewpoints
in the navigational environment, which ensures complete spatial
coverage and eliminates the gap, called Spatial Object Relations
(SOR). Additionally, we observe that agents may repeatedly visit
the same location during navigation, significantly hindering their
performance. For resolving this matter, we introduce the Turning
Back Penalty (TBP) loss function, which penalizes the agent’s
repetitive visiting behavior, substantially reducing the naviga-
tional distance. Experimental results on the REVERIE, SOON,
Touchdown and R2R datasets demonstrate the effectiveness of
the proposed method.

Index Terms—Vision-and-language navigation, temporal object
relations, spatial object relations, turning back penalty.

I. INTRODUCTION

IN RECENT years, vision-and-language navigation (VLN)
has shown great promise in intelligent transportation

systems, offering more intuitive and effective ways for
autonomous vehicles to interpret instructions and navigate
complex urban environments [1], [2]. The goal of VLN [3],
[4], [5], [6] is to guide an agent to a target location based on a
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natural language instruction. While many vision-and-language
problems have been extensively explored [7], [8], [9], [10],
VLN remains highly challenging. This is due to the dynamic
nature of real-world environments and the complexity of the
language instructions.

Significant progress has been made in the field of VLN
[4], [11]. Most existing methods [12], [13], [14], [15] use
RNNs (e.g., GRUs or LSTMs) or transformer-based models
to process visual inputs and align them with the instruction
for action prediction. Recently, several studies [16], [17], [18]
have introduced topological maps and semantic graphs to store
historical information, which leads to improved performance.
Meanwhile, another line of research [19], [20], [21] highlights
the importance of modeling object relationships in navigation
environments.

A method for learning the relations between objects is con-
structing graph-structured feature representations [19], [22].
As depicted in Fig. 1a, a graph-based navigation state is
maintained utilizing GCN at each location during the agent’s
navigation process (such as moving from position 1 to posi-
tion 3). However, due to the issue of over-smoothing, GCN
networks are typically kept shallow, which can impede their
ability to accurately learn relationships. Another approach of
modeling the object relations is introducing external knowl-
edge. The external knowledge mainly comes from two sources.
First, it can be obtained from publicly available image-text
datasets [17], [23], [24]. Second, some methods use the
pretrained ConceptNet system [25], [26] or large language
models [27], [28], [29] to acquire the knowledge. However, as
shown in Fig. 1b, this knowledge is not directly collected from
within the navigation environment. As a result, there exists a
significant gap between the learned object relations and those
in the real environment.

To address the above problems, we propose two modules:
the Temporal Object Relations (TOR) module and the Spatial
Object Relations (SOR) module. As illustrated in Fig. 1c,
the TOR module models object relations along the agent’s
trajectory. At each position of the trajectory, it uses a cross
attention mechanism to compute a relation matrix between
observed objects and instruction nouns. This matrix is updated
as the agent moves. In this way, TOR captures how object rela-
tions change over time during navigation. On the other hand,
the SOR module models spatial relations across the whole
environment. It collects object co-occurrence information from
all viewpoints. Each viewpoint is treated equally, regardless of
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Fig. 1. Three methods of learning the connections between objects.

the current trajectory. The result is a global relation graph that
covers the entire environment.

While these modules enhance the agent’s ability to under-
stand and navigate complex environments, they also introduce
a new challenge. The detailed tracking and continuous updat-
ing of object relations can lead the agent to explore new
locations that are not part of the correct path or to conduct
multiple explorations at the same location. Exploration across
new locations is helpful, granting agents critical environmental
insights and informing their navigational decisions [16], [30].
However, repetitive revisits to the same viewpoint do not
enhance navigational success but rather impair efficiency. To
counteract this, we introduce the Turning Back Penalty (TBP)
loss function. Specifically, during the training process of the
agent, it penalizes the agent each time it passes a previously
visited location. This effectively mitigates the issue of revisits,
thereby improving navigation efficiency. Our primary contri-
butions can be summarized as follows:
• We propose the TOR and SOR modules, which learn the

interdependent relations among different objects from the
dimensions of time and space, respectively.

• We introduce the TBP loss function, which effectively
alleviates the problem of excessive path length caused by
repeated visits to the same location by the agent.

• Extensive experiments have been conducted on the
REVERIE [6], SOON [31], Touchdown [32] and R2R [4]
datasets to demonstrate the superiority of our method over
existing approaches in visual-and-language navigation.

The rest of the paper is organized as follows. Section II
reviews relevant research about VLN. Section III introduces
the details of our method. In Section IV, we present the
training methodology and parameter settings of our model,
and evaluate it on four datasets. We conclude the paper in
Section V.

II. RELATED WORK

A. Vision-and-Language Navigation

VLN [33], [34], [35], [36], [37] has received significant
research interests in recent years with the continual improve-
ment. Early methods [12], [33], [38], [39] usually utilize

recurrent neural networks (RNNs) to encode historical obser-
vations and actions, which are represented as a state vector.
In order to capture environment layouts, Wang et al. [35]
employ a structured scene memory to accurately memorize
the percepts during navigation. Tan et al. [14] propose a two-
stage training approach to enhance the generalization ability
of the agent. Ma et al. [40] use a progress monitor as a
learnable heuristic for search. RPA [41] integrates model-free
and model-based reinforcement learning through environment
modeling and look-ahead planning, achieving strong general-
ization on the R2R task.

More recently, transformer-based architectures have been
shown successful in VLN tasks [42], notably by leveraging
pre-trained architectures. PRESS [43] proposes a stochastic
sampling scheme to reduce the considerable gap between the
expert actions in training and sampled actions in test. VLN-
BERT [11] employs recurrent units in transformer architecture
to predict actions. Loc4Plan [44] introduces spatial localiza-
tion before action planning, leading to improved alignment
between instructions and the environment. LOViS [45] sepa-
rately models orientation and visual signals using a modular
design and task-specific pretraining to improve spatial and
visual grounding. To learn general navigation oriented textual
representations, both AirBERT [3] and HM3D-AutoVLN [37]
introduce expansive VLN dataset to enhance the interaction
between various modalities. DUET [16] adeptly merges local
observations with the overarching topological map through the
use of graph transformers. This streamlines action planning
and bolsters cross-modal comprehension. GridMM [18] builds
a top-down egocentric and dynamically growing grid memory
map to structure the visited environment. In contrast, our work
proposes an object-relations model designed to enhance the
agent’s understanding of the environment.

B. Object Relations Modeling

Recently, some studies have begun to focus on utilizing
the relationships between objects to guide agent navigation
[19], [46], [47]. ORG [19] improves visual representation
learning by integrating object relationships, including category
closeness and spatial correlations. SEvol [22] proposes a
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novel structured state-evolution model to learn the object-
level relationship. CKR [26] proposes a knowledge-enabled
entity relationship reasoning module to learn the internal-
external correlations among room- and object-entities. EXOR
[48] aligns spatial relations between landmarks in instructions
and visual objects in the environment to enhance spatial rea-
soning and interpretability. KERM [17] constructs an external
knowledge base to assist in establishing relationships between
the various entities described in the instructions. OAAM [49]
utilizes two learnable attention modules to highlight language
relating to objects and actions within a given instruction.
VLMaps [50] translates natural language commands into a
sequence of open-vocabulary navigation goals using large
language models, resulting in objects that are spatially defined.
While these methods demonstrate the benefits of incorporating
object relationships, they often focus on static or local asso-
ciations, lack temporal continuity, or are limited to predefined
object scopes. In contrast, our method explicitly models object
relations across both spatial and temporal dimensions, enabling
the agent to learn richer and more dynamic object-level
representations during navigation.

C. Training Regimes

Previous studies [16] mostly train the agent with the super-
vision from a pseudo interactive demonstrator similar to the
DAgger algorithm [51]. Anderson et al. [4] introduce two
distinct training regimes, teacher-forcing and student-forcing,
and utilizes cross entropy loss at each step to maximize the
likelihood of the ground-truth target action. Ma et al. [52]
introduce a self-monitoring loss function that enhances the
agent’s performance by estimating its navigation progress.
Tan et al. [14] introduce an environment dropout method and
enable the agent to navigate in environments with incomplete
information and improving its generalization. Wang et al. [33]
introduce a loss function that integrates reinforcement learning
and self-supervised learning to optimize the agent’s matching
capability across different modalities. These methods accu-
mulate penalties for the agent as the number of exploratory
steps increases. However, due to the poor balancing of penalty
intensity, this may lead to either excessive revisitation of the
same location by the agent or insufficient exploration of the
environment. In contrast, our TBP loss function avoids such
pitfalls by preventing the agent from retracing its steps while
ensuring ample exploration of the environment.

III. METHOD

In the VLN task, the agent is initially located at a starting
node in a previously unseen environment. The environment is
represented by a weighted undirected graph G = {V ,A}, where
V denotes navigable nodes and A denotes edges. The agent
needs to explore this environment to reach the target location,
guided by a natural language instruction. The instruction
embedding consisting of L words isW = {wi}

L
i=1. At each time

step t, the agent observes a panoramic view of the current
node. The panorama is divided into n different perspective
images Rt = {ri}

n
i=1, where ri denotes the image feature of the

i-th perspective and the direction encoding of that perspective.

In addition, m object features Ot = {oi}
m
i=1 are extracted from

the panorama. This is done using annotated object bounding
boxes or automatic object detectors [53], enhancing the agent’s
fine-grained visual perception.

A. Overview of Our Approach

As shown in Fig. 2(a), we adopt the architecture of DUET
[16] as the baseline, It consists of three inputs: panoramic
visual features of the current location, a topological map,
and an instruction. At time step t, the topological map is
represented as Gt = {Vt,At}. Here, Gt is a subset of the overall
map G and encapsulates the state of the environment after t
steps of navigation. Vt contains three kinds of nodes: visited
nodes (circular nodes), the current node (pentagram nodes),
and navigable nodes (triangular nodes).

Our method, as illustrated in Fig. 2(b), employs two mod-
ules to calculate temporal object featuresMt and spatial object
features Nt at each step t, respectively. These features are then
combined with Ot and Rt, in order to generate the panoramic
feature Qt, which is fed into a dual-scale encoder to predict
the agent’s action. The panoramic image and object features
are independently extracted at each time step without temporal
accumulation, and the temporal modeling is solely performed
by the TOR module via attention updates. To further enhance
the agent’s performance, we introduce the TBP loss function.
It can help to prevent repeated explorations and reduce the
length of the agent’s path.

B. Object Relations

In the VLN task, there are connections between the various
objects that the agent perceives. In our method, these con-
nections are learned from two dimensions of time and space,
significantly enhancing the accuracy of the navigation.

1) Object Nouns Features: To extract object-related noun
features from the instruction, we begin by choosing word
embeddings describing objects from W . Specifically, our
process begins by obtaining labels for all objects from the
MatterPort3D simulator [54]. These labels are then compiled
into a noun database, denoted as D. For a given natural
language instruction W , we iterate through each word. If a
word is found within D, it is selected as an object-related
token.

Upon acquiring these object-related embeddings, we
enhance them with positional embeddings as described in
[55]. These positional embeddings correspond to the respective
word’s location within the sentence. Additionally, a type
embedding specific to text, as outlined in [56], is also incor-
porated. Next, we input all noun tokens into a text encoder
that consists of a multi-layer transformer. This process gen-
erates contextual noun representations, which we refer to as
Ŵ = {ŵ1, ŵ2, . . . , ŵL̂}. This step ensures that only object-
related nouns are considered for contextual modeling.

Our framework can also be extended to support open-
vocabulary settings by replacing the fixed-category detector
with an open-vocabulary object detector (e.g., GLIP [57] or
OWL-ViT [58]). This enables the model to recognize novel
objects and align them with instruction nouns beyond the
predefined vocabulary.
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Fig. 2. The overall network architecture. (a) The baseline utilizes a dual-scale encoder to encode local panoramic features, global historical features, and
instruction features for action prediction of the agent. (b) At each time step t, our method employ two modules to learn temporal and spatial object relations.
Then the object relation features are combined with the image features for action prediction. Finally, we designs a novel TBP loss function to supervise the
training of the agent in order to reduce its tendency to backtrack.

Fig. 3. Learning methods for two kinds of relationships.

2) Temporal Object Relations: In the study of object
relations, to circumvent the issue of inadequate learning capa-
bilities resulting from the shallow nature of GCN, we have
designed a temporal object relations (TOR) module. This
module employs a cross attention mechanism to focus on
objects observed during navigation and noun embeddings in
the instruction. Through this approach, we learn a relationship
matrix accurately as the agent progresses along its exploration
trajectory. This ensures temporal continuity in the agent’s
learning process.

Fig. 3a depicts how the agent, when arriving at a new
location, establishes connections between the objects it per-
ceives and the relevant nouns from the navigation instruction.
Specifically, when the agent reaches a location, it obtains a
panoramic view of that position. The agent employs a cross
attention mechanism to learn the associations between all
objects discovered at this location and the nouns mentioned
in the instruction. This process is consistently applied at each
location along the agent’s navigational path. It sets the stage

for the agent to learn and progressively refine the inter-object
relationships across temporal dimensions.

In our approach, we treat the object features, denoted as Ot,
as the query, and the noun features, Ŵ, as the key. We employ a
cross attention mechanism to compute the relationship matrix
T, which can be expressed in the following way:

T = FC (Ot) Ŵ , (1)

where FC is a fully connected layer.
We leverage T to derive the temporal object features Mt.

It is formalized as follow:

Mt = TŴ . (2)

3) Spatial Object Relations: Due to the gap between exter-
nal knowledge and the navigation environment, the agent is
unable to accurately learn the relationships between objects
based on external knowledge. To bridge this gap, we intro-
duce the spatial object relations (SOR) module. This module
considers panoramic observations from all locations in the
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environment, covering full horizontal viewpoints, to ensure
complete spatial coverage.

During the establishment of spatial object relations, the
agent proceeds to update an relationship matrix E based on
the objects identified at each respective location. At initial-
ization, E is set as an identity matrix. During updates, we
compute spatial correlations only between objects of different
categories. Relations among objects of the same category are
not updated further. As illustrated in Fig. 3b, for objects x
and y observed concurrently at the same location, a shorter
distance between them correlates with a stronger association.
Consequently, we update the relationship matrix based on the
distances between objects as seen by the agent at each location
within the environment. The update rule for E is formalized
as follows:

E (x, y)+ =
k1

k2‖vx − vy‖2 + k3‖dx − dy‖2
, (3)

where vx and vy denote the perspectives from the current
position in relation to objects x and y, respectively, and dx and
dy represent the respective depths of objects x and y from the
current position. Here, k1, k2, and k3 are predefined constants,
and ‖ · ‖2 denotes the L2 norm.

In the course of the agent’s training, the pertinent matrix
E′ is retrieved from E, guided by the objects detected at the
agent’s current location and the nouns encapsulated within
the instruction. To construct E′, each noun in the instruction
is first converted to its corresponding object category based on
the predefined noun database D. Assuming the agent currently
discovers c1 objects, and the current instruction contains c2
nouns, the calculation of E′ is as follows:

E′ =

2664
Ep(1)q(1) Ep(1)q(2) Ep(1)q(3) . . . Ep(1)q(c2)
Ep(2)q(1) Ep(2)q(2) Ep(2)q(3) . . . Ep(2)q(c2)
. . . . . . . . . . . . . . .

Ep(c1)q(1) Ep(c1)q(2) Ep(c1)q(3) . . . Ep(c1)q(c2)

3775 ,
(4)

where p(i) is the index of the i-th object and q( j) is the index of
the object category corresponding to the j-th noun. Each entry
Ep(i)q( j) represents the spatial relation between the detected
object and the object category referred to by the j-th noun.
Subsequently, matrix multiplication is employed to derive the
environmental object feature Nt, as per the following equation:

Nt = E′Ŵ . (5)

Upon obtaining both the temporal object features Mt and
the spatial object features Nt, the final object relationship
feature Qt is computed utilizing the equation:

Qt = α1Ot + α2Mt + α3Nt, (6)

where α1, α2, and α3 are fused weights. Subsequently, a
concatenation of Qt and the image feature Rt is performed
to yield the panoramic feature Ft = [Rt,Qt]

C. Turning Back Penalty

In our framework, the agent incrementally constructs a
topological map where each node represents a visited location
and stores the fused feature composed of Nt,Mt, Ot, and Rt.

At each step, the action prediction network—composed of a
Fine-scale Encoder and a Coarse-scale Encoder—predicts the
transition probabilities from the current node to all candidate
nodes in the map. The agent will select the node with the
highest score as the next navigation target.

While executing navigation actions based on this topological
map, we observed that the agent tends to revisit the same
location multiple times. This usually culminates in an elon-
gated navigation path. For instance, an agent’s journey initiates
at point a and concludes at point e, successfully navigating
through the route a → b → c → d → b → e. It can be
observed that the direct path composed of a → b → e would
be optimal. The exploration of vertices c and d represents
additional exploration by the agent, while revisiting vertex b
indicates redundant exploration. Such additional exploration is
beneficial as it enables the agent to acquire new knowledge,
thereby enhancing its navigational skills. Conversely, redun-
dant exploration does not improve navigation efficiency and
leads to unnecessarily prolonged paths, which is disadvanta-
geous.

To address the issue of the agent frequently revisiting
the same location, we have developed a new loss function,
named Turning Back Penalty (TBP). This function introduces
a punitive measure to discourage the agent from redundant
navigation, fostering a more streamlined and direct trajectory.
Concretely, let us consider a scenario wherein the agent is
positioned at location a, and it has a set of r navigable
positions, denoted as {b1, b2, . . . , br}.

LT BP =

rX
i=1

epi diPr
j=1 ep j

, (7)

where pi symbolizes the probability of transitioning from
location a to location bi, and di represents the cumulative
length of the paths that have been traversed repetitively by
the agent in the course of navigating from a to bi.

D. Training and Inference

1) Pretrainging: Previous work [42], [59], [60] has demon-
strated the effectiveness of pretraining transformer-based
models in Vision-and-Language Navigation (VLN). Following
this general paradigm, we design four auxiliary tasks tailored
to our proposed model to perform pretraining.

A. Masked Language Modeling (MLM): Following the
BERT-style [55] setup, we randomly mask 15% of the instruc-
tion tokens and train the model to recover the masked words
using the surrounding context.

B. Masked Region Classification (MRC): For MRC [61],
we randomly mask 15% of the visual inputs and require
the model to predict their semantic labels. Target labels are
generated using an image classification model [62] pretrained
on ImageNet, following a similar strategy to [16].

C. Single-step Action Prediction (SAP): In the SAP task
[63], the agent learns to predict its next action based on the
past trajectory. The SAP loss in behavior cloning given a
demonstration path P∗ is as follows:

LS AP =

TX
t=1

− log p
�
a∗t |W ,P∗<t

�
, (8)
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where P∗<t represents a partial demonstration path, a∗t is the
expert action of P∗<t.

D. Object Grounding (OG): For tasks with object anno-
tations, the object grounding [64] loss is employed.

LOG = − log p (o∗ |W ,PT ) , (9)

where o∗ refers to the object category at the agent’s final
destination PT .

2) Fine-Tuning and Inference: For downstream training,
we fine-tune the model using a combination of three loss
terms: Single-step Action Prediction (SAP), Object Grounding
(OG), and our proposed Turning Back Penalty (TBP). Unlike
the pretraining phase, which uses demonstration trajectories,
fine-tuning is guided by a pseudo-interactive demonstrator.
This demonstrator dynamically selects the next node based
on shortest-path computation at each decision point, ensuring
minimum remaining path length to the goal. This selection is
made such that it adheres to the criterion of minimizing the
overall path length from the agent’s current location to the
target destination. The cumulative loss function that governs
the fine-tuning process is formulated as follows:

L = λ1LS AP + λ2LOG + λ3LT BP, (10)

In this expression, λ1, λ2, and λ3 serve as balance factors,
ensuring a harmonious integration of the individual loss com-
ponents.

During inference, the agent predicts one action per time
step. If the predicted action is not a stop action, the agent
executes it and moves to the corresponding location. If the
action is stop, or if the maximum number of steps is exceeded,
the agent terminates and selects the node with the highest stop
probability as the final location. At the end of navigation, the
target object is selected as the one with the highest predicted
grounding score.

IV. EXPERIMENTS

A. Datasets

In this paper, we focus on using object relationships to
improve agent performance in vision-and-language navigation.
To evaluate our model, we select two datasets that provide
object annotations: REVERIE [6] and SOON [31]. We also
report results on the Touchdown [32] dataset, which represents
urban navigation scenarios. Additionally, we present the results
of our model on the R2R [4] dataset, which lacks object
annotations.

REVERIE dataset mainly consists of instructions that
describe target locations and objects of interest, averaging 21
words per instruction. It provides the agent with bounding
boxes for each object in various panoramas. The agent must
correctly identify and choose the right object bounding box
at the end of its navigation. Paths demonstrated by experts in
this dataset vary in length, ranging from 4 to 7 steps.

SOON dataset provides detailed instructions that accurately
identify target rooms and objects, averaging 47 words in
length. Unlike other datasets, SOON does not include pre-
defined bounding boxes for objects. This requires the agent
to predict objects’ central locations within the panoramas.

To facilitate this, we utilize an automatic object detection
approach as described in [53]. This method helps us generate
potential bounding boxes for the objects. The lengths of expert
demonstrations in SOON are varied, ranging from 2 to 21
steps, with an average of approximately 9.5 steps.

Touchdown is a vision-and-language navigation dataset
built on Google Street View in urban environments. It consists
of 29,641 panoramic images collected from Manhattan, along
with the corresponding connectivity graph. We follow the
data split used in ORAR [65], which includes both seen and
unseen environments. In seen environments, the training and
testing instances share overlapping regions, while in unseen
environments, there is no such overlap. For the seen split, the
train, validation, and test sets contain 6,525, 1,391, and 1,409
instances, respectively. For the unseen split, the train, valida-
tion, and test sets contain 6,770, 800, and 1,507 instances,
respectively.

R2R dataset encompasses a total of 21,567 words, with an
average instruction length of 29 words. Due to the absence of
object annotations in this dataset, we substitute object features
with features from panoramic images. In experiments, we
solely train the agent using temporal object relations.

B. Evaluation Metrics

1) Indoor Environment: To assess the performance of our
method in comparison to previous works, we adopt the conven-
tional evaluation metrics for visual-and-language navigation
task, as delineated in [4] and [6]. These metrics encompass:
(1) Trajectory Length (TL)—the agent’s average path length
in meters; (2) Navigation Error (NE)—average distance in
meters between agent’s final location and the target; (3)
Success Rate (SR)—the percentage of instructions that are
successfully executed, with an NE smaller than 3 meters;
(4) Oracle SR (OSR)—SR given the oracle stop policy; (5)
SPL—SR weighted by Path Length; (6) Remote Ground-
ing Success (RGS)—the percentage of instructions that are
executed successfully.; (7) RGSPL—RGS penalized by Path
Length. Except for TL and NE, all metrics are higher the
better.

2) Urban Environment: To evaluate navigation perfor-
mance in urban settings, we employ three widely used metrics
[32], [65], [66]: Task Completion (TC), Shortest-path Distance
(SPD), and Success weighted by Edit Distance (SED). TC
indicates the proportion of tasks where the agent successfully
reaches the goal. SPD measures how close the agent stops
to the target location in terms of the shortest path within the
environment graph. SED reflects task success while consid-
ering the similarity between predicted and ground-truth paths
based on the Levenshtein edit distance.

C. Implementation Details

1) Model Architectures: For the REVERIE dataset, we use
the ViT-B/16 model [62] pretrained on ImageNet to extract
object features, as it provides bounding boxes. For the SOON
dataset, which lacks bounding box annotations, we use the
BUTD object detector [53] to obtain object regions. For
the Touchdown dataset, we extract object features at each
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE REVERIE DATASET. THE BASELINE INDICATES THE REPLICATED RESULTS OF DUET

viewpoint using the Mask R-CNN model pretrained on the
COCO dataset. For the R2R dataset, we do not employ the
spatial object relations module because of the unavailability
of object annotations.

In the indoor environment, we incorporate a dual-scale
graph transformer [16]. The specific configuration of this
transformer includes setting the number of layers for the lan-
guage encoder, panorama encoder, coarse-scale cross-modal
encoder, and fine-scale cross-modal encoder to 9, 2, 4, and 4,
respectively. The parameters for this segment of our model are
initialized using the pretrained LXMERT model [56]. In the
urban environment, instructions are encoded using a bidirec-
tional LSTM [67] that generates token-level features. Visual
representations are obtained from a ResNet [68] pretrained on
ImageNet.

In the process of computing the relationship matrix E, we
assigned specific values to the parameters k1, k2, and k3, setting
them at 2, 2, and 5e−4, respectively. Furthermore, in order to
compute the object relationship feature Q, the fused weights
α1, α2, and α3 were set to 0.8, 0.1, and 0.1, respectively. Due
to lacking spatial object relations module, we set α1, α2, and
α3 as 0.8, 0.2, and 0 when using R2R dataset. Analogously, for
the precise calculation of the loss function L, we established
the values of the weight parameters λ1, λ2, and λ3 at 1, 1, and
0.2, respectively.

2) Training Details: For the three indoor datasets, we per-
form pretraining with a batch size of 32 using a single NVIDIA
RTX 3090 GPU. For the outdoor dataset, no pretraining is
applied. For the REVERIE dataset, we combine the original
dataset with augmented data synthesized by DUET [16] to
pretrain our model with 100k iterations. Then we fine-tune the
pretrained model with the batch size of 16 for 20k iterations
on 1 NVIDIA RTX3090 GPU. For the SOON dataset, we
only use the original data with automatically cleaned object
bounding boxes, sharing the same settings in DUET [16]. We
pretrain the model with 40k iterations. Then we fine-tune the
pretrained model with the batch size of 4 for 40k iterations
on 1 NVIDIA RTX3090 GPU. For the Torchdown dataset, we
use a batch size of 32 for training. Dropout with a rate of
0.3 is applied after each dense layer and recurrent connection.
For the R2R dataset, additional augmented R2R data in [42] is
used in pretraining. We pretrain the model for 200k iterations
with batch size of 64 and then fine-tune it for 20k iterations
with batch size of 8.

3) Graph Construction: We follow the standard navigation
graph defined by the Matterport3D [54] simulator, where each
node corresponds to a predefined panoramic viewpoint with a
fixed 3D position and heading. During navigation, the agent
incrementally constructs an undirected graph using visited
and adjacent nodes, which are treated as candidate locations
for decision-making. Since each location provides a 360-
degree panoramic view, object appearance is determined by
the current position rather than the movement direction.

D. Performance Comparison

The results of our method on the REVERIE and SOON
datasets are depicted in Table I and Table II, respectively.
Across most metrics on these two datasets, our approach
achieves superior performance. Specifically, in the test split of
REVERIE, as detailed in Table I, our method achieves notable
improvements over the baseline: 4.64% on SR, 4.10% on
SPL, 3.29% on RGS, and 2.34% on RGSPL. This substantial
enhancement underscores the robustness and efficacy of our
technique. Moreover, even when compared to the current
state-of-the-art method, GridMM [18], our method still shows
advancements of 2.18%, 3.77%, 0.29%, and 1.54% on SR,
SPL, RGS, and RGSPL, respectively, highlighting the superior
capability of our approach. As indicated in Table II, on
the more intricate SOON dataset, our method also manifests
exceptional performance, surpassing the current state-of-the-
art. This underscores our method’s proficiency in grasping
inter-object relations, thereby enhancing the agent’s naviga-
tional prowess.

To evaluate the effectiveness of our method in urban
environments, we conducted experiments on the Touchdown
dataset. As shown in Table III, our approach achieves signifi-
cant improvements over the baseline. In unseen environments,
our method improves the TC score by 2.4% on the validation
set and 2.1% on the test set. In addition, compared to the
current state-of-the-art method VLN-VIDEO [66], which relies
on additional augmented data and auxiliary proxy tasks for
pretraining, our method still achieves 0.6% and 0.8% higher
TC on the unseen validation and test sets. In seen envi-
ronments, our method also yields competitive results. These
findings demonstrate the effectiveness and generalizability of
our approach in urban navigation scenarios.

In our study, we also conducted experiments on the R2R
dataset, which lacks object annotations. As shown in Table IV,
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE SOON DATASET. THE BASELINE INDICATES THE REPLICATED RESULTS OF DUET

TABLE III
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE TOUCHDOWN DATASET. THE BASELINE INDICATES THE REPLICATED RESULTS OF

ORAR. THE * DENOTES THAT THE MODEL WAS PRE-TRAINED WITH ADDITIONAL AUGMENTED DATA AND AUXILIARY PROXY TASKS

TABLE IV

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE R2R DATASET. THE BASELINE INDICATES THE REPLICATED RESULTS OF DUET

the absence of explicit object information impeded the agent’s
ability to accurately learn the relationships between objects
in the navigation environment. Our method does not exhibit
significant improvements over other methods in both the val
unseen and test splits across various metrics. Interestingly, we
observes a remarkable phenomenon: on the val seen split,
our method significantly outperforms both the baseline and
other approaches. This can be attributed to the agent’s repeated
exposure to the panoramas in the val seen split during training.
Despite the lack of explicit object annotations, the agent often
manages to infer the presence and relationships of objects
based on these panoramic features. These findings further
illustrate the vital role of object relationships in enabling an
agent to accurately complete navigation tasks. This aspect of
our research highlights the significance of understanding and

integrating object interactions within the navigational context
for improved agent performance.

E. Ablation Study

1) Ablation of Object Relations: To explore the effects of
our proposed modules, TOR and SOR, on the agent’s navi-
gation skills, we integrated them separately into the baseline
method. We then conducted experiments with these integra-
tions on the val unseen split of the REVERIE and SOON
datasets. As illustrated in Table V, both TOR and SOR notably
enhance the navigation performance of the agent. However, we
observed that SOR contributes to a more modest improvement
in navigation performance compared to TOR. This is attributed
to the limited scale of the current datasets used for training the
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TABLE V

ABLATION OF THE OBJECT RELATIONS ON THE VAL UNSEEN SPLIT OF
REVERIE AND SOON. IN THIS TABLE, TOR AND SOR RESPEC-

TIVELY REPRESENT THE TRAJECTORY-OBJECT RELATIONSHIPS
MODULE AND THE ENVIRONMENT-OBJECT RELATIONSHIPS

MODULE. ALL EXPERIMENTS ARE CONDUCTED WITHOUT
UTILIZING TBP LOSS FUNCTION

TABLE VI

ABLATION OF TBP LOSS ON THE VAL UNSEEN SPLIT OF REVERIE
AND SOON. BOTH THE TOR AND SOR MODULES ARE EMPLOYED IN

THESE EXPERIMENTS

Fig. 4. The distribution of trajectory lengths predicted on the val seen and
val unseen splits of REVERIE dataset.

agent. Solely relying on the objects observed at each position
within the environment is inadequate to accurately capture the
relationships among different objects. When both modules are
employed in tandem, the navigational prowess of the agent is
further amplified.

2) Ablation of TBP Loss: In Table V, we observes an
intriguing phenomenon. The inclusion of object relationships
does indeed significantly enhance the agent’s success rates in
navigation (OSR, SR, and RGS). However, this enhancement
also leads to an increase in the trajectory length (TL) of the
agent. As a result, there is no pronounced improvement in
metrics such as SPL and RGSPL. This suggests that the object
relationship module leads the agent to engage in excessive
redundant exploration, resulting in elongated navigation paths.
Upon integrating the TBP loss function, we observes a signifi-
cant reduction in the agent’s revisits to the same location. This
is illustrated in Table VI. This change leads to a more efficient
task completion and shows clear improvements in metrics such
as TL, SPL.

Additionally, Fig. 4 depicts the distribution of navigational
path lengths corresponding to successful navigation instances
(specifically when SR is 1) for both the val seen and val unseen
splits of the REVERIE dataset, comparing scenarios with and
without the integration of the TBP loss function. The figure
reveals that with the TBP loss, there’s a notable increase in the

TABLE VII

THE RESULTS OF PUNISHING TURNING BACK DURING INFERENCE. ξ =
i MEANS DIVIDING THE PROBABILITY OF THE AGENT REACHING A

CERTAIN POSITION BY i

TABLE VIII

ABLATION OF ALL RATIOS IN EQ.(3) ON THE VAL UNSEEN SPLIT OF
REVERIE DATASET

proportion of agent paths falling between 0 and 10, while paths
longer than 20 significantly diminish. This solidly validates
that our TBP loss function effectively curtails the navigation
path length of the agent.

3) Punish Turning Back During Inference: It is also a
intuitive way punish turning back during inference. To assess
whether penalizing the agent’s repetitive visiting behavior
during inference improves its navigational abilities, we have
designed several experiments. The experimental outcomes are
presented in Table VII.

Our findings indicate that penalizing the agent’s repet-
itive visiting behavior during inference does not enhance
its navigational performance. As evidenced in the last five
rows of Table VII, the navigation success rate of the agent
decreases with increasing penalty intensity. This decline in
performance is attributed to the fact that such penalties during
inference prevent the agent from correcting its navigational
errors. Additionally, the first two rows of Table VII reveal that
when repetitive visits by the agent are encouraged, there is a
more significant drop in navigational ability. This is due to the
agent engaging in more unproductive exploration, substantially
increasing the length of the navigational path.

4) Ablation of All Ratios in Equation 3: To investigate the
impact of the constants k1, k2, and k3 in eq. (3), we conduct
an ablation study on the REVERIE validation unseen split, as
shown in Table VIII. In eq. (3), ‖dx − dy‖2 is approximately
4000 times larger than ‖vx−vy‖2. To balance their contributions
in the denominator, we set k3 to a small value of 5e−4 in our
implementation.

The first row of Table VIII (k1 = 2, k2 = 2, k3 = 5e−4)
achieves the best overall performance across all evaluation
metrics. Increasing k1 amplifies the relation scores uniformly,
which weakens the relative differences and leads to perfor-
mance degradation. Similarly, increasing k2 or k3 suppresses
the contribution of view or depth differences, disrupting the
balance between the two cues. These results confirm the
rationality of our chosen parameter configuration.
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TABLE IX
ABLATION OF DIFFERENT FEATURES ON THE VAL UNSEEN SPLIT OF

REVERIE DATASET

TABLE X
ABLATION OF THE FUSED WEIGHTS ON THE VAL UNSEEN SPLIT OF

REVERIE DATASET

TABLE XI
ABLATION OF THE LOSS WEIGHTS ON THE VAL UNSEEN SPLIT OF

REVERIE DATASET

5) Ablation of Different Features: To assess the importance
of each feature in our model, we performed an ablation
study by selectively removing Ot, Qt, or Rt. As shown in
Table IX, removing any of the three features leads to a
noticeable drop in performance. Specifically, excluding Qt

results in a decrease in SR and SPL by 5.48% and 6.06%,
respectively. When Rt is removed, the model shows the worst
overall performance, confirming the importance of panoramic
visual features. Removing Ot causes a smaller decline in
performance, as object-related cues have already been partially
learned by the TOR and SOR modules. These results demon-
strate thatOt,Qt, andRt are all essential and contribute jointly
to navigation accuracy.

6) Ablation of the Fused Weights: We have conducted
an ablation study to evaluate the impact of different fusion
weights α1, α2, and α3 in eq. (6). As shown in Table X, the best
overall performance is achieved when α1 = 0.8, α2 = 0.1, and
α3 = 0.1, which is the setting used in our main experiments.
Other settings lead to performance degradation across multiple
metrics. This demonstrates that assigning a higher initial
weight to Ot contributes more directly to navigation success,
while Mt and Nt, which are derived from object-related
information, serve as complementary cues.

7) Ablation of the Loss Weights: To improve navigation
efficiency, we introduce the Turning Back Penalty (TBP)
to discourage unnecessary revisits. However, in some cases,
revisiting previously visited locations is necessary for the agent
to correct past mistakes. If the penalty is too strong, it may
prevent the agent from making such corrections, ultimately
reducing navigation success. To explore this trade-off, we
conduct experiments with different values of the TBP loss
weight λ3. The results are shown in Table XI. We observe

TABLE XII
THE EVALUATION OF INFERENCE EFFICIENCY. ALL EXPERIMENTS ARE

CONDUCTED ON THE REVERIE VALIDATION UNSEEN SPLIT, WITH
A BATCH SIZE OF 4 AND 3,521 EVALUATION SAMPLES. A SINGLE

NVIDIA RTX 3090 GPU IS USED

TABLE XIII
COMPARISON OF DIFFERENT FUNCTIONAL FORMS IN THE TBP LOSS ON

THE REVERIE VALIDATION UNSEEN SPLIT

that setting λ3 = 0.2 achieves the best overall performance
across all metrics. When λ3 increases to 0.5 or 1.0, the agent’s
performance drops significantly. This suggests that applying a
moderate penalty for revisiting improves navigation efficiency.
However, overly strong penalties may harm performance, as
revisiting certain locations is sometimes necessary to correct
earlier decisions and reach the goal successfully.

8) Inference Efficiency Evaluation: To evaluate the effi-
ciency of our proposed method, we compared the inference
time and GPU memory usage with the baseline model. As
shown in Table XII, our method increases the total inference
time by only 7.33% and GPU memory consumption by 1.83%.
These results demonstrate that the additional cross-attention
computation in the TOR module introduces minimal overhead.
The performance gains achieved by our model come at a
modest cost in computational resources, indicating its practical
applicability.

9) Ablation of Different Functional Forms in the TBP Loss:
To evaluate the impact of different functional forms in the TBP
loss, we compare three variants: a linear function, a square
function, and our proposed exponential function. As shown in
Table XIII, the exponential function achieves the best overall
performance across all metrics. Specifically, it improves SR by
3.5% and SPL by 4.57% compared to the linear function, and
also outperforms the square function by noticeable margins.
The exponential function is particularly effective because it
smoothly emphasizes higher transition probabilities, allowing
the model to more strongly penalize highly probable redundant
revisits while maintaining gradient stability. In contrast, the
linear and square functions apply weaker or more uniform
penalties, leading to suboptimal trajectory optimization. These
results demonstrate the advantage of using an exponential
weighting strategy in the TBP formulation.

F. Robustness Analysis

To verify the stability and reliability of our method, we
conducted robustness experiments on four benchmark datasets:
REVERIE, SOON, Touchdown, and R2R. For each dataset, we
ran both our method and the baseline five times using different
random seeds (based on runtime timestamps), and reported
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TABLE XIV

ROBUSTNESS EVALUATION ON THE REVERIE DATASET. EACH METHOD IS RUN FIVE TIMES WITH RUNTIME TIMESTAMPS AS RANDOM SEEDS, AND
THE MEAN AND STANDARD DEVIATION ARE REPORTED

TABLE XV

ROBUSTNESS EVALUATION ON THE SOON DATASET. EACH METHOD IS RUN FIVE TIMES WITH RUNTIME TIMESTAMPS AS RANDOM SEEDS, AND THE
MEAN AND STANDARD DEVIATION ARE REPORTED

TABLE XVI

ROBUSTNESS EVALUATION ON THE TOUCHDOWN DATASET. EACH METHOD IS RUN FIVE TIMES WITH RUNTIME TIMESTAMPS AS RANDOM SEEDS, AND
THE MEAN AND STANDARD DEVIATION ARE REPORTED

TABLE XVII

ROBUSTNESS EVALUATION ON THE R2R DATASET. EACH METHOD IS RUN FIVE TIMES WITH RUNTIME TIMESTAMPS AS RANDOM SEEDS, AND THE
MEAN AND STANDARD DEVIATION ARE REPORTED

TABLE XVIII

ROBUSTNESS EVALUATION OF DIFFERENT METHODS ON THE REVERIE DATASET. EACH METHOD IS RUN FIVE TIMES WITH RUNTIME TIMESTAMPS
AS RANDOM SEEDS, AND THE MEAN AND STANDARD DEVIATION ARE REPORTED

the mean and standard deviation of all major evaluation
metrics in Table XIV to Table XVII. Across all datasets,
our method consistently achieves better average performance
than the baseline. For example, on the REVERIE validation

unseen split, our method improves SR from 47.96 ± 0.70 to
50.91 ± 0.38, and SPL from 33.26 ± 0.35 to 36.93 ± 0.12,
while also reducing the standard deviation. Similar trends
can be observed on the SOON and Touchdown datasets,
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Fig. 5. Visualization of attention maps and navigation examples.

demonstrating that the performance gains are not only higher
in magnitude but also more stable. On the R2R dataset,
although the improvements are relatively smaller due to the
absence of object annotations, our method still exhibits lower
variance in most metrics, highlighting its robustness under
different settings.

To further assess the consistency of our method beyond
baseline comparison, we also evaluated it against other com-
petitive approaches on the REVERIE dataset. As shown in
Table XVIII, our method achieves the highest performance on
most metrics with smaller or comparable standard deviations.
These results collectively indicate that our method is robust
across different random initializations and generalizes well
across various datasets and evaluation metrics.

G. Qualitative Results

1) Visualization of Object Relations: To demonstrate that
our method effectively captures object-noun associations,
we visualize the attention heatmaps of the TOR and SOR
modules after training. Fig. 5a shows the attention scores
between detected objects and instruction nouns, where higher
scores indicate stronger semantic relevance. The TOR mod-
ule captures the temporal alignment between the agent’s
current observation and the instruction, while the SOR
module complements it by modeling spatial dependencies
among co-occurring objects. For instance, the SOR mod-
ule identifies strong associations such as pillow–shelves or
decoration–bathroom, which may not be highlighted in TOR
but are crucial for understanding the local environment. These
complementary attention patterns demonstrate that both mod-
ules collaboratively contribute to aligning visual objects with
the semantic cues provided in the natural language instruc-
tions.

2) Visualization of the Navigation Trajectories: To eluci-
date the effectiveness of our proposed approach, we have
rendered a comparative visualization of the navigation trajecto-
ries generated by both DUET and our method. As illustrated
in Fig. 5b, both techniques can accurately reach navigation
targets. However, DUET tends to involve the agent in exces-

sive exploratory actions. This often results in repeated visits to
the same places, hindering navigational efficiency. Conversely,
our method substantially diminishes the agent’s inclination to
backtrack, facilitating the selection of more direct routes that
expedite the completion of the navigation tasks. Furthermore,
our analysis reveals that at the onset of navigation, our method
opted for a proximal route, in contrast to DUET which
embarked on a relatively longer path with a greater number
of actions. This indicates that our method can effectively
understand the relationships between objects encountered by
the agent and the specified targets. Consequently, it identifies
more efficient paths. This aids in completing navigational tasks
more effectively.

V. CONCLUSION

In this study, we introduced Temporal-Spatial Object Rela-
tions Modules and a Turning Back Penalty (TBP) loss
function that together enhance agent navigation. By learning
the connections between various objects, the agent can more
effectively complete navigation tasks. The application of the
TBP loss function successfully prevents repetitive visits to the
same location by the agent, thereby enhancing navigational
efficiency. It is noteworthy that the object relationships we
model might not be entirely accurate because of the limited
datasets. Moving forward, our future endeavors will focus
on devising more sophisticated object relationship modeling
techniques, expanding dataset scales, and honing the precision
and efficiency of navigational tasks.
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