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Enhancing Text-Video Retrieval Performance With
Low-Salient but Discriminative Objects

Yanwei Zheng , Member, IEEE, Bowen Huang , Zekai Chen , and Dongxiao Yu , Senior Member, IEEE

Abstract— Text-video retrieval aims to establish a matching
relationship between a video and its corresponding text. However,
previous works have primarily focused on salient video subjects,
such as humans or animals, often overlooking Low-Salient but
Discriminative Objects (LSDOs) that play a critical role in
understanding content. To address this limitation, we propose a
novel model that enhances retrieval performance by emphasizing
these overlooked elements across video and text modalities.
In the video modality, our model first incorporates a feature
selection module to gather video-level LSDO features, and applies
cross-modal attention to assign frame-specific weights based
on relevance, yielding frame-level LSDO features. In the text
modality, text-level LSDO features are captured by generating
multiple object prototypes in a sparse aggregation manner.
Extensive experiments on benchmark datasets, including MSR-
VTT, MSVD, LSMDC, and DiDeMo, demonstrate that our model
achieves state-of-the-art results across various evaluation metrics.

Index Terms— Text-video retrieval, low-salient but discrimina-
tive objects, cross-modal attention.

I. INTRODUCTION

TEXT-VIDEO retrieval is a critical subtask of cross-modal
matching [1], [2], [3], [4], which focuses on retrieving

videos that most semantically align with a natural language
query from a large pool of unlabeled videos. With the expo-
nential growth of online video content, the demand for efficient
and accurate retrieval systems has become more pressing.
This task is essential for multi-modal visual and language
comprehension, where significant gap exist between the text
and video modalities.

Existing text-video retrieval studies can be divided into
two primary lines: dual-modality methods and multi-modality
methods. The former rely solely on frame-based informa-
tion from videos and word-level information from text. For
instance, Stright-CLIP [5] explores the application of CLIP
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Fig. 1. The examples about LSDOs. In these videos, microphone, pot and
audience are important auxiliary information that can help distinguish different
scenes.

to obtain video representations without the need for anno-
tations made by the users. PromptSwitch [6] precomputes
video representations to facilitate learning of enriched seman-
tic features. UCOFIA [7] captures cross-modal similarity
information across both coarse and fine levels. In contrast,
the latter usually leverage the expert model to extract fea-
tures from different attributes of the video and text, such
as motion, appearance, semantics, and audio. For example,
CE [8] introduces a collaborative expert model to effectively
aggregate general and specific semantic cues from pre-trained
embeddings, improving video retrieval performance. Teach-
Text [9] proposes a novel generalized distillation method that
leverages complementary cues from multiple text encoders
for enhanced supervision in text-video retrieval. MMT [10]
designs a multi-modal transformer that jointly encodes video
modality and temporal information, optimizing both visual and
language embeddings for video retrieval.

However, both lines of work often overlook Low-Salient
but Discriminative Objects (LSDOs), which can enhance the
model’s ability to distinguish various scenes. In this paper,
LSDOs refer to items in videos that are not particularly salient,
but play a crucial role in determining the categories of these
videos. As shown in Fig. 1a, the audience and microphone,
while not immediately noticeable, serve as crucial contextual
cues, significantly aiding in distinguishing different scenes.
Similarly, Fig. 1b and Fig. 1c can be effortlessly distinguished
based on the presence of the pot and audience, respectively.

Despite the essential contribution of LSDOs to text-video
retrieval, fully leveraging them remains a significant challenge.
First, current pre-trained models in computer vision typically
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focus on prominent visual features [11], such as regions
with vivid colors, high contrast, and clear textures. As a
result, LSDOs are generally neglected during fine-tuning for
downstream tasks, such as text-video retrieval. Furthermore,
even when features related to LSDOs are extracted from
videos, how to obtain LSDO features from text modality is
still a challenge. This is because the textual descriptions are
often brief and lack detailed information about the LSDOs,
which creates a substantial gap between the two modalities.

To address the above problems, we fully utilize the LSDO
features from videos and texts to enhance the performance
our model. More specifically, we explore three approaches for
video-level LSDOs, namely capturing from multiple videos
of distinct classifications, utilizing a single frame from a
specific video, and averaging all frames within a given video,
to assess their impact on the retrieval outcomes through
extensive experiments. Additionally, we also recognize that
disparate frames within a video possess varying degrees of
reliance on the video-level LSDOs. For instance, certain
frames already encompass abundant contextual information,
making additional object features unnecessary. To address
this issue, we design an object attention module to allocate
distinct weights to different frames after the acquisition of the
video-level LSDO features, ultimately obtaining frame-level
LSDO representations. More precisely, we designate all frames
in a video as the query and the video-level features as
both the key and the value, utilizing the cross-modal atten-
tion to derive a weighted contextual feature for each frame.
After extracting LSDO knowledge from the video, we fur-
ther address the gap between the video and text modalities
by extracting corresponding LSDO features from the text.
Specifically, we generate a set of object prototypes based on
textual descriptions and assign them varying weights to derive
text-level LSDO features. Our primary contributions can be
summarized as follows:

• To the best of our knowledge, we are the first to
consider those Low-Salient but Discriminative Objects
(LSDOs) in text-video retrieval, significantly enhancing
the model’s ability to distinguish various scenes and
improving retrieval performance.

• We fully consider the alignment of LSDO knowledge
between the videos and texts, effectively bridging the
gap between these two modalities. In the video modal-
ity, we sequentially extract video-level and frame-level
LSDO features from coarse to fine. In the text modality,
we obtain text-level LSDO features based on object
prototypes.

• Through extensive experiments, we demonstrate the
effectiveness of our method, and achieve state-of-the-
art results across multiple public benchmark datasets,
including MSR-VTT [12], MSVD [13], LSMDC [14] and
DiDeMo [15]. For example, on the LSMDC [14] dataset,
our method has improved by 1.2%, 1.1%, and 1.6%
respectively in Recall@1, Recall@5, and Recall@10
compared to the current best approach.

Paper organization: In Section II, we present the most
related work. Section III details our approaches to acquire
video-level, frame-level and text-level LSDO features.

Section IV reports our experimental results, and Section V
concludes the paper with a future research discussion.

II. RELATED WORK

A. Text-Video Retrieval

Owing to the prevalence of noise within large-scale
text-video retrieval datasets, such as HowTo100M [16],
researchers often resort to reports on smaller datasets such
as MSRVTT [12] and MSVD [13]. Consequently, pre-trained
expert models are extensively employed to extract various
facets of video and text features [8], [9], [10], [17], [18],
including appearance, posture, voice, and semantics, thereby
compensating for data scarcity. In alternative approaches [19],
[20], [21], [22], [23], videos and texts are introduced into
a joint encoder as inputs, followed by a binary classifier
trained to predict whether a given video-text pairing consti-
tutes a match. Both ClipBERT [19] and VideoBERT [22]
embed text-video pairings through BERT-like architectures,
facilitating early cross-modal fusion. HERO [20] employs
cross-modal transformer and temporal transformer to capture
the local context of a video frame and the global video context,
respectively.

Recently, a large-scale language-image model known as
CLIP [24] was introduced. Researchers have attempted to
build upon this model, extending it to a joint text-video
model for text-video retrieval tasks [5], [25], [26]. As a
formidable visual-language model, CLIP [24] surpasses the
performance of many contemporary models [8], [10] in a zero-
shot manner. CLIP4Clip [25] presents three video aggregation
schemes - mean-pooling, self-attention, and a multimodal
transformer - elevating the text-video retrieval performance
to next level. To reduce the number of redundant video
tokens, CenterCLIP [27] design a multi-segment token clus-
tering algorithm to find the most representative tokens and
drop the non-essential ones. X-CLIP [28] presents a novel
multi-grained contrastive model for video-text retrieval, and
proposes the Attention Over Similarity Matrix module to make
the model focus on the contrast between essential frames
and words, thus lowering the impact of unnecessary frames
and words on retrieval results. ProST [29] uses a progressive
approach to perform spatio-temporal prototype matching, cap-
turing detailed spatial elements along with diverse temporal
events. UATVR [30] integrates multi-level semantics flexibly
by introducing extra learnable tokens within the encoders.
However, these works fail to consider those low-salient but
discriminative objects in videos and texts, resulting in the
omission of vital features.

B. Cross-Modal Attention

Cross-modal attention was first proposed in [31] and has
since been predominantly applied to text-image tasks [32],
[33], [34], [35], [36], [37], [38]. UNITER [32] acquires
a universal text-image representation through extensive pre-
training, subsequently empowering heterogeneous downstream
tasks with joint multimodal capabilities. ALBEF [33] incorpo-
rates a contrastive loss to align image and text representations
prior to their fusion via cross-modal attention, promoting
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Fig. 2. Framework of our methods.First, we use separate image and text encoders to encode the video frames and the associated text.Next, a fully connected
layer in the Frame Feature Extraction module further embeds the frame features to obtain the feature representation f ′

v .We then select one of three
video-level LSDO encoding methods from the Video-Level LSDOs block to derive the overall LSDO properties f s for the video.Using f ′

v as the query
and f s as both the key and value, object attention within the Frame-Level LSDOs block is employed to obtain the frame-level LSDO information f p . The
Text-Level LSDOs block is then utilized to extract the corresponding features f r from the text.In the Feature Fusion module, we apply dot product attention
to conditionally aggregate the relevant video frame information based on the text. Finally, the cosine similarity between the video and text representations is
computed, followed by the calculation of a cross-entropy loss.

more grounded vision and language representation learning.
Oscar [35] introduces a novel cross-modal learning tech-
nique that leverages object tags detected in images as anchor
points, significantly simplifying the learning of alignments.
ViLBERT [36] expands the widely acclaimed BERT architec-
ture into a multimodal two-stream model, processing visual
and textual inputs in separate streams that interact through
cross-modal attention transformer layers.

Recently, researchers have started to apply cross-modal
attention to text-video tasks [26], [39], [40], [41], [42], [43],
[44]. ActBERT [39] exploits profound contextual informa-
tion and fine-grained relations for joint text-video modeling.
A multi-layer cross-modal attention network, facilitating the
effective optimization of a contrastive loss during training,
was proposed in [40]. In [41], a temporal attention mechanism
was introduced, which allows to go beyond local temporal
modeling and learns to automatically select the most relevant
temporal segments. MCQ [43] utilizes the rich semantics of
text (nouns and verbs) to formulate questions, enabling the
video encoder to capture more regional contents and temporal
dynamics. RIVRL [44] employs two branches to learn both the
overview and in-depth information of a video, with the latter
branch informed by content acquired from the previous branch.
X-Pool [26] devises a cross-modal attention mechanism to
assign different weights to each video frame based on its
textual content. In contrast, our approach employs cross-modal
attention to supplement each frame with corresponding LSDO
features, thereby compensating for any deficiencies in these
information within the frame.

III. METHOD

Given a query text t and a video index set V , the objective
of text-video retrieval is to rank all videos v ∈ V according
to their similarities with the query text. Fig. 2 illustrates the
comprehensive framework of our method for a text-video
retrieval task, encompassing five key components: the frame
feature extraction block, the video-level LSDOs block, the
frame-level LSDOs block, the text-level LSDOs block and

the feature fusion block. The first block is used to obtain
video frame features. The next three blocks are employed to
extract video-level, frame-level and text-level LSDO features
respectively, while the last block aggregate the relevant
video frame information based on the text. In the following
sections, we expound upon the representation of frame and
text embeddings in Section III-A. Subsequently, we present
the extraction methods for video-level, frame-level and
text-level LSDO features in Section III-B, Section III-C, and
Section III-D, respectively. Lastly, we introduce the
text-conditioned video embedding aggregation technique
and the objective function in Section III-E and Section III-F,
respectively.

A. Feature Representation

1) Frame-Level Representation: For a video sampled with
n frames {r1, r2, . . . , rn}, an image encoder processes these
frames to obtain frame-level features. Our image encoder is
initialized with the public CLIP [24] checkpoints. We first
extract the [CLS] token from the last layer of the encoder,
which represents the aggregate feature for the entire frame.
This can be formulated as:

f i
v = ImageEnc (ri ) , (1)

where ImageEnc represents the image encoder, f i
v is the

feature corresponding to the [CLS] token of frame ri . By cal-
culating Eq. (1) for each frame in a video v, we obtain a
sequence of [CLS] embeddings f v =

[
f 1

v, f 2
v, . . . , f n

v

]
∈

Rn×d , where d is the feature size of the [CLS] token.
Next, To further represent the features of video frames,

we use a fully connected layer in the frame feature extraction
block to encode f v , which can be represented as:

f ′
v = FC

(
f v

)
, (2)

where f ′
v ∈ Rn×d denotes the features of all frame in a video.
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Fig. 3. Features select. The features select module picks a modeling strategy from three video-level LSDO features. Among them, the shared features are
derived by encoding m distinct video types, the average features computes the mean of all frames within the video, and the single features represents the
difference between a specific video frame and the average features.

2) Textual Representation: Given a text t , we directly
employ the text encoder of CLIP to produce the textual
representation, initialized with the publicly available CLIP
checkpoints [24]. Our model utilizes a lower-cased byte pair
encoding tokenizer [45] with a vocabulary size of 49,152.
Prior to processing through the text encoder, the textual token
sequence is padded with [BOS] and [EOS] at the beginning
and end, respectively. The [EOS] token in the last layer is
considered the textual feature f t ∈ Rd , and the corresponding
to the tokens of all words are defined as the word feature
vector f w ∈ RL×d , where L denotes the number of words in
the sentence. The relationship is described by the following
equation: [

f t , f w

]
= TextEnc (t) , (3)

where TextEnc represents the text encoder.

B. Video-Level LSDO Features Extraction

LSDOs are a significant property of videos, which aid in
identifying the categories of the videos. To improve retrieval
performance, we take these objects in videos fully into
account. We propose three methods for obtaining video-level
LSDO representations: shared features, average features, and
single features, as illustrated in Fig. 3. Shared features are
obtained by extracting features from several different types of
videos. Then we merge these features from multiple videos to
obtain final representations, which can be defined as

f shared
s = Concat (φ (v1) , φ (v2) . . . φ (vm)) , (4)

where v1, v2, . . . vm denote m different type of videos. φ is a
transformer-structured network, used to extract video features,
and Concat concatenates multiple video features. Through this
function, we obtain the shared features f shared

s ∈ Rm×ds ,
where ds is the dimension of the feature generated by φ.

However, we observe the effectiveness of shared features
heavily depends on the chosen video types. A group of shared
features that perform well in some situations may not gener-
alize to other situations. To address this issue, we introduce
two alternative schemes that use a single or the average of all
frames in the video as the video-level representations. We refer
to these schemes as single features and average features. The
average features calculates the mean value of all frames to
indicate LSDOs, which can be formulated as

f average
s =

1
n

n∑
i=1

Norm
(

FC
(

f i
v

))
, (5)

where f i
v is the embedding of [CLS] token in the i-th frame,

Norm is a Normalization layer [46], FC is a fully connected
network that projects the dimension of f i

v from d to ds and
f average

s ∈ Rds is the average features.
Unlike the average features, the single features first selects

one frame from all frame features of the video, and subtracts
it from f average

s . Then we set any result greater than the
threshold θ to 0 to remove non-LSDO features. The single
features f single

s ∈ Rds can be defined as

f sub = Norm
(

FC
(

f i
v

))
− f average

s , (6)

f single
s ( j) =

{
f sub ( j) , f sub ( j) ≤ θ

0, f sub ( j) > θ
, (7)

where θ is our defined threshold, j ∈ [0, ds) means the
j-th feature in f sub and f sub is the difference between the
selected frame and f average

s .

C. Frame-Level LSDO Features Extraction

In Section III-B, we have attained three video-level LSDO
features. For the convenience of description, we mark them
as f s . However, the importance of the LSDOs in different
frames is inconsistent. Some frames may need more LSDO
information, while others do not. So the direct combination of
the same video-level LSDO features and each frame feature
cannot adapt to the actual situation. To solve this problem,
our idea is to design a frame-level LSDOs block to extract the
corresponding information of each frame. The core mechanism
is our adaptation of a scaled dot product attention between
f s and all frames in the video. Conditioned on these frames,
we gain frame-level LSDO embeddings that learn to capture
the most consistent representations according to different
frame features. Since frames with higher demand for LSDO
information are more dependent on video scenes, our scaled
dot product attention mechanism can learn to give greater
weight to these frames to get more LSDO features.

To elaborate, in our frame-level LSDOs block, we first
project a video embedding f ′

v ∈ Rn×d into a single query
qv ∈ Rn×d f and f s ∈ Rr×ds into both key ks ∈ Rr×d f

and value vs ∈ Rr×d f matrices, where r can be 1 or m
depending on the selection of f s , d f is the size of the
projection dimension. The projections are defined as

qv = Norm
(

f ′
v

)
W ′

q , (8)

ks = Norm
(

f s
)

W ′

k, (9)

vs = Norm
(

f s
)

W ′
v, (10)

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 01,2025 at 01:21:11 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: ENHANCING TEXT-VIDEO RETRIEVAL PERFORMANCE WITH LSDOs 585

Fig. 4. Based on f w , we employ two fully connected layers to predict a
weight matrix that yields LSDO prototypes, denoted as f o. Subsequently, f o
and f t are fused to obtain the final textual representation.

where W ′
q , W ′

k , W ′
v are the projection matrices in Rd×d f ,

Rds×d f , Rds×d f respectively. In order to learn flexible condi-
tioning between the given video frames and LSDOs, we then
adapt scaled dot product attention from the query-projected
frames embeddings to the key-projected video scene embed-
dings. The dot product attention gives relevancy weights from
each frame to f s which we leverage to acquire frame-level
LSDO embeddings:

Attention
(
qv, ks, vs

)
= softmax

(
qvkT

s√
d f

)
vs, (11)

As such, the qv , ks and vs matrices can be interpreted
similar to those in the original scaled dot product attention
proposed in [47] except with cross-modal interactions. That is,
the query-projected frames embeddings is used to seek from
the key-projected video-level LSDO embeddings to obtain
different weights. The value-projected embeddings represent
the overall LSDO features of the video which we want to
assign to different frames.

To embed the LSDO features into a joint space with video
frames, we project the frame-level LSDO embeddings from
the attention module back into Rd by applying a weight W ′

o ∈

Rd f ×d to obtain

f p = Norm
(
Attention

(
qv, ks, vs

)
W ′

o
)
, (12)

where the resulting output f p is the frame-level LSDO
features conditioned on each frame in a video.

D. Text-Level LSDO Features Extraction

In Section III-B and Section III-C, we derived LSDO
features from video data. To bridge the gap between the video
and text modalities, we also extract corresponding LSDO
embeddings from the text. As shown in Fig.4, based on f w

obtained in Section III-A.2, we apply two fully connected
layers to generate a sparse matrix Wp ∈ RK×L , where K is
the number of prototypes. This matrix is then used to weight
f w, resulting in the desired LSDO prototypes, denoted as f o,
which can be defined as:

f o = Wp · f w, (13)

where f o ∈ RK×d . Ideally, f o represents word features in
the text that are relevant to LSDOs. Finally, f o and f t are
combined to represent the final textual features f r ∈ Rd .

f r = γ f t + (1 − γ ) MaxPooling
(

f o
)
, (14)

where γ is a constant between 0 and 1.

E. Feature Fusion

After obtaining frame-level LSDO features in Section III-C,
we need to combine it with f ′

v to get representation of
frame with LSDO information. We define the representation
f m ∈ Rn×d as

f m = α f ′
v + (1 − α) f p, (15)

where α is a digit from 0 to 1.
To compute similarity between given text and video,

we need to embed them into a joint space. So the key problem
is how to design an aggregation function to fuse multiple
frame features in f m into one frame feature. To address
the problem, we employ a text-conditioned video feature
aggregation way [26]. Similar to Section III-C, we still use
the scaled dot product attention mechanism to aggregate f m .

Specifically, We first use text embedding f r ∈ Rd as query
and video frame embedding with LSDO features f m ∈ Rn×d

as both key and value, and then project them to dimension da .
The procedure can be described as

qr = Norm
(

f r
)

W ′′
q , (16)

kv = Norm
(

f m
)

W ′′

k , (17)

vv = Norm
(

f m
)

W ′′
v , (18)

where W ′′
q , W ′′

k , W ′′
v are projection matrices in Rd×da and

qr , kv , and vv are the corresponding query, key and value,
respectively. The dot product attention assigns the weights of
text to relevant video frames, which can be defined as

Attention(qr , kv, vv) = softmax

(
qr kT

v
√

da

)
vv. (19)

Finally, we project the embedding in Eq. (19) into Rd to
maintain the same dimension as the text embedding. The
projection is defined as

f a = Norm
(
Attention

(
qr , kv, vv

)
W ′′

o
)
, (20)

where W ′′
o is our projection matrices in Rda×d , f a is our final

video representation embedding.

F. Loss Function

Our model is trained in a dataset consisting of N text
and video pairs {(ti , vi )}

N
i=1. In each pair, the text ti is the

corresponding description of the video vi . The cross entropy
loss from [48] is employed to optimize our model, which
considers matching text-video pairs as positives and all other
pairwise text-video combinations in the batch as negatives. The
symmetric text-to-video(t2v) and video-to-text(v2t) losses are
defined as

Lt2v = −
1
B

B∑
i=1

log
exp (s (ti , vi ) · λ)∑B
j=1 exp

(
s
(
ti , v j

)) , (21)

Lv2t = −
1
B

B∑
i=1

log
exp (s (ti , vi ) · λ)∑B

j=1 exp(s(t j , vi ))
, (22)

L = Lt2v + Lv2t , (23)

where s (ti , vi ) represents the cosine similarity between the
text and video, λ is a learnable scaling parameter and B is the
batch size.
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IV. EXPERIMENTS

A. Datasets

MSR-VTT [12] is a common benchmark text-video
retrieval dataset comprising 10,000 videos and 200,000 cap-
tions. We observe that videos in the MSR-VTT dataset include
20 distinct scene categories, which bolsters our impetus to
derive scene information from the videos. Video durations
within this dataset span from 10 to 32 seconds. For compar-
ison with previous works, we use two divisions designated
as MV-7K and MV-9k. The former as designated in [16],
encompasses a subset of roughly about 7k videos for the
training set while the latter, adhering to the partition in [10],
consists of approximately 9,000 videos for the training set.
The test set, as defined in [49], comprises 1,000 meticulously
chosen text-video pairs.

MSVD [13] contains about 120k captions and 1,970 videos.
The duration of each video varies from 1 second to 62 seconds.
Within this dataset, the videos embody a variety of scene
types, which coincides with our approach. The allocation
of training, validation, and test sets consists of 1,200, 100,
and 670 videos, respectively. The test partition exhibits an
inconsistent number of captions and videos. Consequently,
we evaluate by regarding all furnished text-video pairs as
discrete instances, in accordance with [25].

LSMDC [14] consists of 118,081 movie clips, each asso-
ciated with a singular caption description. These clips vary in
length, ranging from 2 to 30 seconds. Of these, 101,079 clips
are designated for training, 7,408 for validation, and 1,000 for
testing.

DiDeMo [15] contains 10,000 videos, accompanied by
40,000 captions, with an average duration of 30 seconds per
video. Following the approach described in [50], we merge
multiple text descriptions of each video into a single paragraph
to conduct paragraph-to-video retrieval tasks. The dataset is
divided into 8,395 videos for training, 1,065 for validation,
and 1,004 for testing.

We present our results on the test set for all datasets to
evaluate their performance.

B. Experimental Settings

1) Implementation Details: We run our experiments
on 1 NVIDIA RTX 3090 24GB GPU using the Pytorch1

library. We adopt CLIP’s VIT-B/32 image encoder and a
transformer-based text encoder as our Image Encoder and
Text Encoder, respectively. Specifically, the text encoder con-
sists of multi-head self-attention and feed-forward networks.
The transformer consists of 12 layers and 8 attention heads.
The dimension of the query, key and value features is 512.
We establish the dimensions of d , ds , d f , and da as 512, while
initializing the scaling parameter λ from a pretrained CLIP
model. All projection weight matrices and biases are initialized
as identity and zeros, respectively. Our models undergo end-
to-end fine-tuning on each dataset. For the MSVD, MSRVTT,
and LSMDC datasets, we configured our experiments with a
batch size of 32, sampling 12 frames per video. In contrast,

1https://pytorch.org/

for the DiDeMo dataset, we set the batch size to 6, with a
higher frame sampling rate of 64 frames per video. During
fine-tuning, we designate a learning rate of 1e−6 for CLIP-
initialized weights. For additional parameters, we set learning
rates of 3e−5, 1e−5, 1e−5, 3e−5 and 1e−5 for MV-9K, MV-
7K, MSVD, LSMDC and DiDeMo, respectively. The AdamW
optimizer [51] is utilized with a weight decay of 0.2. The
initial value of the threshold, θ , is set to 0.9. In the sin-
gle features, to more accurately capture the relevant LSDO
features, we divide the video evenly into 12 segments and
randomly select a frame from the 6th segment as f i

v for the
MSRVTT, MSVD, and LSMDC datasets. For the DiDeMo
dataset, we divide the video into 64 segments and randomly
select a frame from the 32nd segment. In the shared features,
The number of video types, m is set to 20. Specifically,
considering that the MSRVTT dataset comprises 20 categories
of videos, we extract one video from each category. Each
video is sampled for 12 frames, which are then encoded using
the Image Encoder. Subsequent operations, including average
pooling and concatenation, yield the shared features. During
text-level LSDO features learning, we also set the number of
prototypes, K , to 20. For all videos, each frame is resized to
224×224, in line with prior works [8], [25], [52]. Lastly, The
constants α and γ are both set to 0.8.

2) Evaluation Protocols: To evaluate the retrieval perfor-
mance of our model, we use recall at Rank K (R@K, where
higher values are preferable), median rank (MdR, lower is
better), and mean rank (MnR, with lower values being more
desirable) as the evaluation metrics, which has been widely
used in previous works [10], [25], [52], [53], [54], [55].

3) Fast Inference Method: In application, because query
texts are not a priori known during inference, the efficiency
will be affected with the cross-attention scheme for calculating
video-text similarities. To address this problem, we follow
the processing method in [26]. We first mean-pool the pre-
computer frame embeddings coming from our model and
very efficiently obtain a set of most similar candidates from
the index set given a retrieval query. Then we run the
cross-attention scheme only on these candidates and re-rank
them for retrieval. In fact, this processing method does not
affect the retrieval performance of our model.

C. Performance Comparison

To evaluate our proposed model, we compare it with the
previous works on MSR-VTT, MSVD, LSMDC and DiDeMo.
We tabulate the text-to-video (t2v) retrieval performance of
our model trained the MV-9K, MV-7K, MSVD, LSMDC and
DiDeMo in Table I, Table II, Table III, Table IV and Table V,
respectively. LSDO-shared, LSDO-average and LSDO-single
denote the results of three distinct videl-level LSDO repre-
sentations, respectively. In comparison to preceding studies,
we attain state-of-the-art (SOTA) results on most metrics all
datasets.

Specifically, LSDO-shared exhibits superior performance on
the MV-9K dataset. Compared with UCOFIA [7] which is the
best result in previous works, this method improve Recall@5
and MnR by 3.1% and 0.9, respectively. It also achieves
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TABLE I
t2v RESULTS ON THE MV-9K DATASET

TABLE II

t2v RESULTS ON THE MV-7K DATASET. † INDICATES RESULTS
REPRODUCED UNDER THE SAME PARAMETER SETTINGS

AS THE ORIGINAL METHOD

TABLE III
t2v RESULTS ON THE MSVD DATASET

comparable results in terms of Recall@1. In addition, LSDO-
shared achieves comparably better retrieval result compared
with the other two video-level LSDO features acquisition
methods. However, on several other datasets, the retrieval

TABLE IV

t2v RESULTS ON THE LSMDC DATASET. † INDICATES RESULTS
REPRODUCED UNDER THE SAME PARAMETER

SETTINGS AS THE ORIGINAL METHOD

TABLE V

t2v RESULTS ON THE DIDEMO DATASET. † INDICATES RESULTS
REPRODUCED UNDER THE SAME PARAMETER

SETTINGS AS THE ORIGINAL METHOD

ability of this method declines noticeably. We observe that
the model with a shared features exhibits subpar generaliza-
tion capacity in our experiments. When transitioning between
datasets, the performance of LSDO-shared may degrade sig-
nificantly, as it fails to capture the diverse video-level LSDOs
present in different datasets due to the variance in objects.

Conversely, the other two methods exhibit superior gen-
eralization capacity, attaining favorable outcomes across all
datasets. More precisely, LSDO-average yields significant
improvement on MV-7K and LSMDC, respectively. For exam-
ple, on MV-7K, LSDO-average outperforms the current best
method, UCOFIA [7], with improvements of 1.4%, 3.6%, and
3.0% in Recall@1, Recall@5, and Recall@10, respectively.
Additionally, it achieves leading or comparable results on
other datasets. The metrics for LSDO-single show varying
degrees of improvement across all datasets. Our experiments
reveal that LSDO-average outperforms LSDO-single on MV-
9K, MV-7K and LSMDC, yet the inverse occurs on MSVD
and DiDeMo. This phenomenon arises because the LSDO-
average, which accounts for all video frames, is more suitable
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TABLE VI
ABLATION STUDY ON DIFFERENT MODULES WITH LSDO-shared. I , V , F , AND T REPRESENT THE FRAME-FEATURE EXTRACTION,

VIDEO-LEVEL LSDOS, FRAME-LEVEL LSDOS, AND TEXT-LEVEL LSDOS MODULES, RESPECTIVELY

TABLE VII
ABLATION STUDY ON DIFFERENT MODULES WITH LSDO-average. I , V , F , AND T REPRESENT THE FRAME-FEATURE EXTRACTION,

VIDEO-LEVEL LSDOS, FRAME-LEVEL LSDOS, AND TEXT-LEVEL LSDOS MODULES, RESPECTIVELY

TABLE VIII
ABLATION STUDY ON DIFFERENT MODULES WITH LSDO-single. I , V , F , AND T REPRESENT THE FRAME-FEATURE EXTRACTION,

VIDEO-LEVEL LSDOS, FRAME-LEVEL LSDOS, AND TEXT-LEVEL LSDOS MODULES, RESPECTIVELY

for large-scale datasets with multiple object types, such as
MSR-VTT and LSMDC. For simpler datasets like MSVD
and DiDeMo, employing a single frame suffices for obtaining
accurate LSDO information, considering additional frames
may interfere with the final retrieval results.

Based on the above analysis, the three proposed video-level
LSDO feature extraction methods are suited for different
situation. LSDO-shared excels when there is sufficient time for
fine-tuning and training. However, this method exhibits limited
generalization capabilities. If the objective is to generalize
the trained model to different datasets, LSDO-average and
LSDO-single methods are more advantageous. The former is
particularly effective for large-scale datasets with numerous
categories and complex objects, whereas the latter is better
suited for smaller, simpler datasets.

Furthermore, we discern another intriguing observation.
Although our method achieves significant progress on
MSR-VTT and LSMDC, its performance on MSVD and
DiDeMo does not markedly surpass that of previous works.
We attribute this to the small size and simplicity of the MSVD
and DiDeMo datasets. These two datasets contain only about
48,000 and 8,400 video-text pairs for training, respectively,
which account for merely one-fifth and one-twentieth of the
MSRVTT dataset.. The training content is relatively simple
and easy to learn. Consequently, prior works like X-Pool
and UCOFIA can readily learn LSDOs through basic feature
fusion, rendering the addition of new LSDO information
insufficient to substantially enhance retrieval outcomes.

D. Ablation Study
In this subsection, we conduct ablation studies under dif-

ferent settings to fully examine the effectiveness of different
modules and parameters.

1) Ablation Study on Different Modules of Our Frame-
work: To evaluate the impact of various features on the final
retrieval performance, we conduct experimental analyses of
different modules across all datasets. Table VI, Table VII, and
Table VIII present the effects of each module under different
video-level LSDO features. Based on the results from the three
tables, we draw the following conclusions.

First, our primary finding is that frame features in videos
are more critical than various LSDO features. This is also
in line with our intuitive feeling, because the frame features
contain the subject information in videos. The results presented
in No.1, No.2, No.4, and No.6 across all three tables strongly
support this conclusion. For example, in Table VI, the results
in No.1 and No.4 show that using frame features, as opposed to
not using them, led to a significant improvement in Recall@1
and Recall@5 scores on the MV-9K dataset, with increases of
28.4% and 27.8%, respectively. Moreover, we observe from
the results in No.0 and No.2 that even when only frame-level
features are used, their performance still outperforms the
combination of all three types of LSDO features.

Second, an additional interesting observation arises from the
results in No.1 and No.4 of the three tables. It is evident that,
after removing frame features, the performance of the LSDO-
shared approach decreases significantly more than that of the
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other two methods. This can be attributed to the fact that,
in both LSDO-average and LSDO-single, the model learns the
corresponding LSDO features for each video. When frame-
level features are removed, the model tends to compensate
by learning more object information. In contrast, the LSDO-
shared approach does not have this ability to adapt, resulting
in a larger performance drop.

Third, for LSDO-average and LSDO-single, the inclusion
of video-level and frame-level LSDO features contributes
positively to the final retrieval performance. This is sup-
ported by the results in No.0, No.3, and No.4 of Table VII
and Table VIII. We also find that video-level LSDO features
tend to improve the Recall@5 score, while frame-level LSDO
features enhance the Recall@1 score. For instance, in No.0 and
No.3 of Table VII, the addition of video-level LSDO features
increased the Recall@5 score by 1.6% on the MV-9K dataset,
while the R@1 score showed only a modest increase of 0.1%.
When frame-level LSDO features were further incorporated in
No.4, the Recall@1 score showed a significant improvement
over No.3, with a 1.2% increase on MV-9K. We hypothesize
that the video-level LSDO features provide more general
information, aiding in distinguishing videos with substantial
differences, but they have a limited impact on videos that are
more similar. In contrast, frame-level LSDO features are more
detailed and help to differentiate videos that are closely related.
For LSDO-shared, we observe from No.0, No.3, and No.4 in
Table Table VI that the combination of video-level and frame-
level LSDO features has a positive effect only on the MV-9K
and MV-7K datasets. This suggests that the generalization
capability of LSDO-shared is relatively weak.

Finally, the inclusion of text-level LSDO features yields
a consistent improvement in retrieval performance across all
datasets. As demonstrated in the results from No.0 and No.5
in Table VII, adding text-level LSDO features resulted in
increases of 0.5%, 2.4%, 0.2%, 0.5%, and 0.1% in Recall@1
score on the MV-9K, MV-7K, MSVD, LSMDC, and DiDeMo
datasets, respectively.

2) Ablation Study of Threshold θ in LSDO-single: In order
to study the influence of the variation of threshold θ on the
retrieval performance in LSDO-single, we conducted experi-
ments on different settings of θ . The experimental results are
shown in Table IX.

According to this table, we have two key findings. First,
learnable θ consistently outperforms the non-learnable version.
For instance, when the initial value is set to 0.9, the learnable θ

improves the Recall@1 score across MV-9K, MV-7K, MSVD,
LSMDC, and DiDeMo by 1.6%, 1.2%, 1.1%, 0.2%, and
0.8%, respectively, compared to the non-learnable θ . Second,
the initial value of θ plays a significant role in the final
experimental outcomes. For example, when θ is non-learnable,
setting the initial value to 0.5 results in a 1% improvement in
Recall@1 on the MV-9K dataset compared to setting it to 0.1.
Even when θ is learnable, the initial value still influences the
model’s performance, though to a lesser extent.

For the above findings, we have made the following anal-
ysis. The higher the threshold θ is set, the more information
of the frame will be obtained, so the corresponding LSDO
information will be more comprehensive, which can produce

Fig. 5. The evolution of learnable parameters during training. In these two
figures, the horizontal axis represents the number of training iterations, while
the vertical axis represents the value of θ and λ, respectively.

better retrieval result. However, if θ is set too high, the
obtained LSDO will contain too much irrelevant information,
which will disturb the learning of the model. Therefore,
selecting an appropriate value for θ is crucial for different
datasets. Compared to the non-learnable θ , the learnable θ

can automatically adjust its value during training, which often
leads to better performance. This also explains why the perfor-
mance differences between learnable θ values with different
initializations are relatively small—the model can adapt and
find an superior θ during the learning process.

To further illustrate the variation of the learnable parameter
θ during model training, we plot its changes with different
initial values over the course of training, as shown in Fig. 5a.
As training progresses, the model automatically adjusts and
converges to the most suitable value of θ based on the initial
setting. When the initial values are 0.5 and 0.9, the final values
of θ are similar, which also explains why the results in the
last two rows of Table IX are close for the MV-9K dataset.
However, when the initial value of θ is set to 0.1, the model
converges to a different, yet still suitable, value, indicating
that the choice of initial value influences the final retrieval
performance.

3) Ablation Study on the Value of λ in the Loss Function:
In Eq. (21) and Eq. (22), λ is a learnable parameter whose
value evolves throughout the training process. To analyze
its dynamics, we present its variation curves across different
datasets with LSDO-single. As shown in Fig. 5b, in our
experiments, the initial value of λ is set to 100, which is
inherited from the pre-trained CLIP parameters. We observed
that, as training progresses, the value of λ gradually decreases
across all datasets. This behavior can be attributed to the
role of λ during different training stages. In the early stages,
a larger λ helps amplify the differences in similarity scores,
enabling the model to more effectively distinguish between
positive and negative pairs. As the training proceeds and the
model learns more stable and robust features, λ decreases,
which reduces the amplification of extreme differences. This
prevents excessive gradients and helps maintain the stability
of the model during optimization.

4) Ablation Study of Initialization in LSDO-shared: We set
different initial values for shared features in LSDO-shared to
study the impact of initialization methods on retrieval results.
Table X shows the impact of initial values of shared features on
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TABLE IX
ABLATION STUDY ON THE VALUE OF θ IN LSDO-single

TABLE X
ABLATION STUDY OF INITIALIZATION ON THE VIDEO-LEVEL LSDO FEATURES IN LSDO-shared

TABLE XI
THE IMPACT OF FEATURES ACROSS DIFFERENT DIMENSIONS

Fig. 6. These two blocks first project the input features to a lower or higher
dimensions, and then map them back.

retrieval results. In this experiment, Zero, Unique and Feature
respectively represent the use of zeros, one-hot encoding and
video feature to initialize shared features.

Based on this table, we find that zeros and one-hot encoding
initialization show considerable retrieval efficiency, and the
effect of video feature initialization is significantly better
than the first two methods. This is because video feature
already contain some LSDO information. So when using video
feature initialization, our model can learn the corresponding
video-level LSDO features more easily, while the other two
initialization methods will greatly harm the learning of LSDO
information, resulting in worse result.

5) Lower or Higher Feature Dimensions: Inspired by [58],
we replace the FC layers in Fig. 2 with bottlenecks or
inverted bottlenecks to verify whether the features of lower
or higher dimensions can help improve retrieval performance.
The structures of these two blocks are shown in Fig. 6. Input
features are first mapped to lower or higher dimensions to
obtain better feature representations, and then mapped back
for subsequent training. We evaluation the effects of the two
structures on all datasets employing LSDO-average.

Table XI shows the results of replacing the FC layer
with bottlenecks or inverted bottlenecks. Based on this table,
we make a conclusion that inverted bottlenecks have a slight
inhibitory effect on the retrieval performance of our model
rather than an improvement effect. We analyze two reasons
that led to this result. Firstly, the original feature dimen-
sion is already high enough, and further enlargement cannot
achieve better results. Secondly, inverted bottlenecks brings
more parameters, which may lead to overfitting due to the
small amount of video dataset. Additionally, when utilizing
bottlenecks to substitute for the FC layers, the retrieval ability
of our model significantly drop. This phenomenon indicates
that both lower feature dimensions and batch normalization
can damage the performance of the retrieval model.

E. Qualitative Results

In this subsection, we present two visualization experiments
to demonstrate the model’s ability to extract relevant LSDO
features. Both experiments are conducted without the text-level
LSDOs block to highlight the model’s performance in the
video modality.

1) Video-Level LSDO Features: To demonstrate that the
proposed model can indeed extract video-level LSDO informa-
tion, we visualized the attention maps of the last transformer
layer in Image Encoders with and without the use of LSDO
blocks. As shown in Fig. 7, when employing LSDO blocks,
the Image Encoder pays significantly more attention to those
low-salient but discriminative objects besides the main parts
of videos such as human and animals. For instance, in the two
samples on the top left, our model with LSDO blocks gives
significant attention to both salt and bowl, which is beneficial
for identifying cooking videos. Conversely, when not using
LSDO blocks, the model tends to focus more on text and
overlook important LSDO information. This result indicates
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Fig. 7. The figures show the attention maps of the last transformer layer in
image encoder.The attention is indicated from low to high with the color blue
to red.

Fig. 8. Qualitative result.For each displayed frame above, the bar plot shows
its attention weight of the video-level LSDO features.

the correctness of our conjecture and the effectiveness of the
framework.

2) Frame-Level LSDO Features: The frame-level LSDO
features are actually derived by weighting the video-level
LSDO features for each frame. Therefore, to demonstrate the
frame-level LSDO features, we visualize the weights of each
frame in the video in Fig. 8. The experiment is completed
on the MV-9K dataset and the video-level LSDO features is
obtained by the average value of all frames. For each example,
we use a histogram to show the attention weights of three sam-
pled frames from a video. In the first example, we can see that
the second frame has the lowest weight and the corresponding
weights of other frames are higher. Because this frame already
contains a lot of LSDO information, no additional LSDO
features are needed. Similarly, in the second video, the third
frame has the highest weight. This is because the important

content of the third frame is a child, and the LSDO information
contains less, so it is more necessary to supplement the LSDO
information. The above examples fully verify our hypothesis
that our model can supplement LSDO information for those
frames lacking them.

V. CONCLUSION AND FUTURE RESEARCH

In this work, we focus on analyzing the shortcomings
of previous text-video retrieval research, which do not fully
consider those low-salient but discriminative objects, and
propose an alternative framework, which contains video-level,
frame-level and text-level LSDOs blocks. We propose three
video-level LSDO embeddings acquisition methods and shows
how our method to learn different LSDO attention for different
frames in a video. When assigning LSDO information to
each frame in the video, we introduce a cross-modal attention
mechanism. Through this mechanism, we can add relevant
features to each frame according to their demand for LSDO
information. In the future work, we plan to continue to explore
different video-level LSDO acquisition ways and frame-level
LSDO attention distribution mechanism. We hope to add more
accurate LSDO information to each frame of the video in
the subsequent research to improve the effect of text-video
retrieval.
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