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Abstract. Multivariate time series anomaly detection is of great sig-
nificance in monitoring and ensuring the stable operation of complex
systems. The multivariate time series generated in real scenes often have
complex dependency patterns, summarized as temporal dynamics and
spatial dynamics. Specifically, temporal dynamics manifested as com-
plex dependencies between values at different timestamps, while spatial
dynamics refer to uncertain similarity relationships between different se-
quences. In order to simultaneously model temporal and spatial dynam-
ics, we propose a variational autoencoder based automatic clustering
method for multivariate time series anomaly detection(ACVAE), which
maps input sequences to latent representations using VAE and recon-
structs input sequences based on the latent representations, while de-
tecting anomalies based on reconstruction errors. Specifically, we design
an encoder network that combines TCN and GRU to learn multi-scale
long short-term temporal dependencies, and introduce the Dirichlet prior
to automatically capture the similarity between sequences. Finally, we
conduct extensive experiments on two publicly available datasets, and
the results show that the ACVAE is superior to other baseline methods.

Keywords: Multivariate time series · Anomaly detection · Dirichlet pro-
cess · Variational autoencoder.

1 Introduction

With the rapid development of IoT technology, more and more sensors are de-
ployed in industrial environments, generating a large amount of real-time moni-
toring data, making multivariate time series anomaly detection an indispensable
⋆ Corresponding author.
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part of intelligent industrial systems[1]. Considering the uncertainty of anoma-
lous patterns and the difficulty in obtaining labels, the recently popular idea of
anomaly detection approaches is to train the model on normal data to learn the
normal patterns, and then identify the data deviating from the normal patterns
as anomalies on the testing set [2]. In order to learn normal patterns, we need
to focus on the complex temporal dynamics and spatial dynamics in multivari-
ate time series, which are the two major challenges of multivariate time series
modeling.

Temporal dynamics refers to the complex nonlinear long short-term tem-
poral dependencies in time series. In addition, time series have stochasticity,
namely the presence of noise and uncertainty fluctuations. The CNN based meth-
ods, such as DeepAnt[3], can effectively extract short-term features. Some TCN
based works such as HS-TCN[4] and TCN-GMM[5] can model long-term de-
pendencies. In addition, LSTM based EncDec-AD[6], Telemanom[7] and GRU
based OmniAnomaly[8], GGM-VAE[9] have been successively proposed. The at-
tention mechanism based MTAD-GAT[10] and Transformer based GTA[11] also
have emerged. Moreover, to model stochasticity and learn robust latent rep-
resentations, some VAE based models have been proposed to simultaneously
learn temporal dependence and stochasticity, such as LSTM-VAE[12], and Om-
niAnomaly[8].

Spatial dynamics refers to the similarity relationships between sequences, and
the number of clusters is uncertain. It is difficult for us to cluster sequences based
on manual experience. Some existing works have designed specific graph learn-
ing strategies to model the inter sequence graph relationships. The GDN[13],
FuSAGNet[14] and StackVAE-G[15] employ the top-k strategy to construct sen-
sor relationship graphs, while GTA[11] proposes a graph structure learning strat-
egy based on Gumbel-Softmax Sampling to learn the global topology among all
nodes. The MTAD-GAT[10] designs a feature-oriented graph attention network
to model inter sequence relationships.

In summary, previous works either utilize deep neural networks to model
temporal dependencies or design graph learning strategies to model the in-
ter sequence graph relationships. However, there lacks a method to simulta-
neously model multi-scale long short-term temporal dependencies and stochas-
ticity, while considering the uncertain similarity relationship between sequences
and achieving automatic clustering. Therefore, we propose a variational autoen-
coder based automatic clustering method to address the temporal dynamics and
spatial dynamics simultaneously. Overall, this is a VAE framework that maps
input sequences to latent spaces and reconstructs inputs based on latent rep-
resentations, while using reconstruction errors as anomaly scores to determine
anomalies. Specifically, we design a TCN-GRU network as the encoder for VAE
to learn multi-scale features and long short-term dependencies of time series. In
order to model spatial dynamics and automatically cluster similarity sequences,
we introduce the Dirichlet prior, which allows the model to dynamically ad-
just the number of categories based on data without specifying the number of
categories K in advance. Our main contributions can be summarized as follows:
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– We propose a variational autoencoder based automatic clustering method for
multivariate time series anomaly detection to address the temporal dynamics
and spatial dynamics simultaneously.

– For each sequence, we use a variational autoencoder to map the input se-
quence to a latent representation and reconstruct the input accordingly.
Specifically, we design a TCN-GRU as the encoder network to model multi-
scale long short-term temporal dependencies patterns.

– We apply a Dirichlet process prior on the latent representations of all se-
quences, which aims to model the similarity relationship between sequences
and achieve clustering automatically.

– We conduct extensive experiments on two publicly available datasets to eval-
uate our proposed model, and the results show that the performance of our
model is significantly better than the baseline methods.

2 Related Work

In existing deep learning based multivariate time series anomaly detection algo-
rithms, modeling temporal dependencies and spatial dependencies are the two
focuses of modeling multivariate time series patterns.

To model temporal dependence and stochasticity, researchers have proposed
some deep learning methods based on CNN, TCN, LSTM, GRU, or Trans-
former[16]. DeepAnt[3] uses a two-layer CNN to model temporal dependen-
cies within input time window. HS-TCN[4] proposes a semi-supervised layered
stacking TCN to handle the anomaly detection problem. EncDec-AD[6], Tele-
manom[7], S-RNNs[17] and LSTM-AD[18] are all prediction frameworks based
on LSTM, especially LSTM-AD which designs stacked LSTM to learn temporal
dependencies. The GGM-VAE[9] employes GRU within the VAE to discover the
dependencies and stochasticity among the time series data. GTA[11] proposes
a new multi-branch attention mechanism to simultaneously consider local and
global context temporal dependencies.

To model spatial dependencies between sequences, some works have designed
specific graph learning strategies. GDN[13] is a graph deviation network that de-
fines an embedding for each sensor sequence and uses the similarity between em-
beddings as the basis for selecting top-k neighbors to construct a sensor relation-
ship graph. FuSAGNet[14] also uses the top-k strategy to learn graph structures
and combines sparse autoencoders and GNN to achieve both reconstruction and
forecasting. MTAD-GAT[10] proposes a feature oriented graph attention method
to learn inter sequence dependencies.

3 Model Architecture

3.1 Problem Statement

Given a dataset D = {{xt
n}|Nn=1}|Tt=1, where N represents the number of se-

quences and T is the total length of time series. We define xn = {xt1
n , . . . , xts

n } as
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an input sequence of length s, and xts∗ = {xts∗
1 , . . . , xts∗

N } represents the feature
vector at timestamp ts∗ . In reconstruction based models, the training objective is
to learn a function that can correctly reconstruct inputs on the normal dataset
Dtrain, denoted as f(xn) → x̂n. The aim of anomaly detection is to find out
whether an anomaly has occurred at a certain moment according to whether the
reconstruction error surpasses the threshold on the dataset Dtest.

3.2 Model Overview

To model the temporal and spatial dynamics simultaneously in multivariate time
series and further achieve accurate anomaly detection performance, we propose a
variational autoencoder based automatic clustering framework. Overall, the pro-
posed framework is a VAE based reconstruction framework and detects anoma-
lies through the reconstruction errors. Specifically, our model mainly consists
of three parts: encoder, clustering part, and decoder. The TCN-GRU based en-
coder embeds the input xn of each sequence into a latent representation zn. The
clustering part uses a Dirichlet prior to guide latent representations to achieve
automatic clustering and model the similarity between sequences. In addition,

nz

nx

 

N

Fig. 1. Graphical model representations. The dashed lines mean the encoder whose
parameter is ϕ. The solid lines denote the decoder whose parameter is θ.

the graph model representation of our ACVAE is shown in Fig. 1. According to
VAE theory [19], the ELBO function of the n-th sequence is:

log pθ(xn) ≥ E
qϕ(zn|xn)

[log{ pθ(xn,zn)
qϕ(zn|xn)

}]
= Eqϕ(zn|xn)[log pθ(xn|zn)]−DKL(qϕ(zn|xn)||pθ(zn)) = L(θ, ϕ)

(1)

where the first item characterizes the model’s ability to reconstruct the in-
put series. The second item is the Kullback-Leibler divergence between the ap-
proximate posterior qϕ(zn|xn) and prior distributions pθ(zn). The parameters of
qϕ(zn|xn) and pθ(xn|zn) are learned with the encoder and decoder.

3.3 Encoder

To model the multi-scale long short-term temporal dependencies in the input
time series, we propose a TCN-GRU based encoder. We assume that qϕ(zn|xn)
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Fig. 2. The details of TCN-GRU network.

follows a Gaussian distribution and use the encoder to learn the parameters
[µn, σn]. As shown in Fig. 2, we adopt a three-layer TCN structure with dilation
of 1, 2, 4, respectively. The output of time ts∗ in the l-th layer is:

h(l)
n (ts∗) = f

(l)
dl

(h(l−1)
n ) =

Kc−1∑
i=0

w
(l)
i · h(l−1)

n (ts∗ − dl · i) (2)

where l = 1, 2, ..., L and we set L = 3. The f (l)
dl

represents the dilation convolution
operation of layer l, with a dilation rate of dl. The Kc is the size of the convolution
kernel. Then, the outputs of the third layer TCN are fed into the GRU unit to
further model the sequential long-term dynamics within time series data. And
we pass the output of the last timestamp in GRU through two linear layers to
obtain µn and σn, respectively:[

µn, log σ
2
n

]
= Linear(FGRU(h

(3)
n (ts), g

ts−1
n ) (3)

where FGRU is the GRU cell, and g
ts−1
n is the output of previous GRU cell.

Finally, the latent representation zn was obtained through reparameterization
techniques[19]: zn = µn + σn ⊙ ρ, ρ ∼ N(0, 1).

3.4 Clustering

To capture the similarity between sequences and achieve automatic clustering,
we introduce a stick-breaking Dirichlet process on the prior distribution of z.
The details are shown in Fig. 3.

First, we draw ck from the Beta distribution Beta(1, η), and calculate πk =

ck
k−1∏
i=1

(1− ci). And we sample µ̃ from the Gaussian distribution N(µ, σ), whose

parameters are constant. Then, we sample ξk from N(µ̃, σ̃), and all clusters share
the σ̃. For each sequence, we use an indicator vector yn to indicate which cluster
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Fig. 3. The generative process of prior distribution of z.

it belongs to and sample yn from Mult(1;π1, · · ·π∞). Finally, we draw the zn
from N(ξyn , σ

2
cI), where σc is the variance parameter shared by all clusters.

We estimate the stick-breaking Dirichlet process prior[20] parameters with
the variational inference[21]. Consistent with literature [22, 23], we consider the
stick-breaking process to have a truncation level of K. And we have q(c, ξ, y) =
K∏

k=1

q(ck)
K∏

k=1

q(ξk)
N∏

n=1
q(yn), where q(ck) ∼ Beta(γ1k, γ2k) . According to litera-

ture[20], the (γ1k, γ2k) can be calculated by:

γ1k = 1 +
N∑

n=1

∼
ykn, γ2k = η +

N∑
n=1

K∑
j=k+1

∼
yjn. (4)

For each cluster k, we have q(ξk) ∼ N(µk, σ
2
kI) and the (µk, σk) can be

calculated by:

µk

σk
2 = µ̃

σ̃2 +

N∑
n=1

∼
yk
n zn

σ2
c

, 1
σk

2 = 1
σ2 +

N∑
n=1

∼
yk
n

σ̃2 .
(5)

For latent representation zn, the cluster indicator variable yn can be dis-
tributed as q(yn) ∼ Mult(

∼
yn) and

∼
yn can be calculated by:

∼
yin = exp{Ψ(γ1i)− Ψ(γ1i + γ2i) +

i−1∑
j=1

[Ψ(γ2j)− Ψ(γ2j + γ2j)]

− 1
2σ2

c
[(zn − µi)

T
(zn − µi) + σ2

i ]},
(6)

where Ψ(·) is the digmma function.

3.5 Decoder

To reconstruct the input series based on the learned latent representation zn, we
use a GRU based decoder to model p(xn|zn). To address the cumulative errors
problem, we use the scheduled sampling strategy[24] to introduce ground-truth
values as the input for the next step during the training phase. Specifically, the
input of each timestamp ts∗ is the connection of (zn, ṽ

ts∗
n ), where ṽts∗n can be

represented as:
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ṽts∗n =

{
x
ts∗−1
n , p(m) > rand(0, 1)

x̂
ts∗−1
n , otherwise

(7)

where x̂
ts∗−1
n is the reconstructed output , and x

ts∗−1
n is the ground-truth value.

p(m) = 1
1+αeαm is a inverse sigmoid decay function, in which α is the hyper-

parameter and m represents the number of iterations. As the training rounds
increases, the value of p(m) decreases. Finally, the output of GRU is processed
through a linear layer to obtain the final reconstructed output {x̂t1

n , x̂t2
n , · · · , x̂ts

n }.

3.6 Objective Function and Training

For the ACVAE framework, our training goal is to maximize the ELBO function.
Considering all sequences, the objective function can be represented as:

L(θ, ϕ) =
N∑

n=1
Eqϕ(zn|xn)[log pθ(xn|zn)]−

N∑
n=1

DKL(qϕ(zn|xn)||pθ(zn)), (8)

where ϕ is the parameters of the encoder TCN-GRU network, while θ includes
both the variational parameters in Sec. 3.4 and the parameters of the decoder
GRU network. We use back-propagation algorithm to update the neural network
parameters and use equations Eq. 4, Eq. 6, Eq. 5 to update the stick-breaking
variational parameters. And we adopt alternating optimization strategies[25] to
jointly learn the above parameters.

3.7 Anomaly Detection

When detecting anomalies, we calculate the mean reconstruction error of all N
sequences at timestamp ts∗ as the anomaly score:

Sa(ts∗) =
1

N

N∑
n=1

√(
x̂ts∗
n − xts∗

n

)2
(9)

If Sa(ts∗) > τ , we assume an anomaly has occurred at timestamp ts∗ . Consistent
with highly relevant works GRELEN[2] and GTA[11], we use the grid search
algorithm to find the threshold τ and report the optimal F1.

4 Experiments

4.1 Experimental Setup

Datasets Description We conduct extensive experiments on two public mul-
tivariate time series datasets: SWaT, SMD. The SWaT dataset is obtained from
51 sensors and actuators within 11 days at a frequency of 1 second. The SMD
dataset is gathered from 28 different server equipment, each of which has 38
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Table 1. Experimental results of different approaches on SWaT and SMD using
Precision, Recall, F1 and ROC-AUC as metrics. The best performances are highlighted
in bold and the second best are underlined.

Datasets SWaT SMD
Method/Metric Pre. Rec. F1 AUC Pre. Rec. F1 AUC

Telemanom 0.9575 0.6422 0.7687 0.7814 0.6242 0.6534 0.5781 0.7563
LSTM-AD 0.8716 0.7329 0.7963 0.8186 0.8482 0.8547 0.8307 0.7351

GDN 0.9721 0.6907 0.8076 0.8266 0.8503 0.9104 0.8757 0.8655
MTAD-GAT 0.8721 0.7984 0.8337 0.8346 0.7873 0.8851 0.7736 0.8021

ACVAE(Ours) 0.9223 0.8058 0.8601 0.8576 0.8545 0.9556 0.8881 0.8112

indicators. It is worth noting that we perform max-min normalization prepro-
cessing on all datasets. And we use the normal data portion as the training set
and the data containing anomalies as the testing set. In addition, we randomly
divide 20% of the training set as the validation set for model selection.

Baselines. We compare the anomaly detection performance of our ACVAE
with four popular anomaly detection methods:

– Telemanom[7]: The Telemanom utilizes LSTM for one-step prediction and
uses prediction error to detect anomalies.

– LSTM-AD[18]: The LSTM-AD is a forecasting based anomaly detection
approach that designs stacked LSTMs to learn the temporal dependence.

– GDN [13]: The GDN selects K sequences with the highest similarity be-
tween embeddings as neighbors to represent the relationships among sensors.

– MTAD-GAT [10]: The MTAD-GAT designs time oriented and feature ori-
ented GAT to model temporal dependencies and inter sequence relationships.

Metrics. We take the Precision, Recall, F1 and ROC-AUC as evaluation
metrics. The higher the F1 and AUC, the better the model performance.

Training Settings. We conduct all experiments on six NVIDIA GeForce
RTX 3090 GPUs and use Pytorch version 1.10.0 with CUDA 11.1. We use the
Adam optimizer and set the learning rate to 0.001. In addition, an early stop
method with patience 5 is adopted. The batch size is 128 and 512 on the SWaT
and SMD datasets, respectively. The size of the input window is 30, and the size
of the latent variable zn is 5. We use a three-layer TCN network with expansion
rates of 1, 2, and 4, and set the convolutional kernel size to 3. The hidden layer
dimension of GRU network is 64.

4.2 Performance and Analysis

We use precision, recall, F1, and AUC as metrics to compare the performance
of ACVAE with the other four baselines on the SWaT and SMD datasets. The
results are shown in Table 1. It can be seen that our model performs the best
in recall, F1, and AUC metrics. Compared with the suboptimal model, ACVAE
improves recall, F1, and AUC by 0.93%, 3.17%, 2.76% on the SWaT dataset
and improves precision, recall, F1 by 0.49%, 4.96%, 1.42% on the SMD dataset,
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Table 2. Experimental results of ablation studies on SWaT and SMD using Precision,
Recall, F1 and ROC-AUC as metrics. The ACVAE without removal of any components
achieves the best performance.

Datasets SWaT SMD
Method/Metric Pre. Rec. F1 AUC Pre. Rec. F1 AUC

ACVAE(Ours) 0.9223 0.8058 0.8601 0.8576 0.8545 0.9556 0.8881 0.8112
ACVAE_w/o DP prior 0.9347 0.7795 0.8501 0.8502 0.8636 0.9392 0.8768 0.8070

ACVAE_w/o TCN 0.9070 0.8028 0.8517 0.8506 0.8713 0.9002 0.8705 0.8016

respectively. The superior performance of ACVAE demonstrates the necessity
of modeling both temporal and spatial dynamics simultaneously. In addition,
models that consider both inter sequence relationships and temporal dependen-
cies, such as ACVAE, MTAD-GAT and GDN perform significantly better than
models that only consider temporal dependencies such as LSTM-AD and Tele-
manom.

4.3 Ablation Studies

To verify the effectiveness of each module of the ACVAE, we evaluate the per-
formance of the following variants:

– ACVAE_w/o DP prior. To study the superiority of the Dirichlet process
prior, we replace the prior with the standard normal distribution commonly
used in traditional VAE frameworks.

– ACVAE_w/o TCN . To study the effect of proposed TCN-GRU, we replace
TCN-GRU with traditional GRU in the encoder.

As shown in Table 2, the F1 and AUC of ACVAE_w/o DP prior decreases
1.16%, 0.86% on SWaT dataset and 1.27%, 0.52% on SMD dataset, which demon-
strates the superiority of the Dirichlet prior over the ordinary Gaussian prior in
the anomaly detection task, as well as the necessity of modeling the similar-
ity between sequences. The F1 and AUC of ACVAE_w/o DP TCN decreases
0.98%, 0.82% on SWaT dataset and 1.98%, 1.18% on SMD dataset, which in-
dicates that our proposed TCN-GRU is superior in modeling multi-scale long
short-term temporal dependencies.

4.4 Case Study

To demonstrate the superiority of our ACVAE in anomaly detection, we visual-
ize the anomaly labels of the total SWaT dataset, as well as the anomaly scores
and thresholds of our model and other baseline methods. As shown in Fig. 4,
we mainly select three representative regions for analysis. The R1 and R2 are
regions with anomalies to verify the model’s anomaly detection performance,
while R3 is an area without anomalies to study the model’s robustness. From
the Fig. 4, in region R1, all methods except ACVAE missed detecting anomalies,
which proves the superior anomaly detection performance of our model. In region



10 L. Yan et al.

R2, only ACVAE and GDN correctly detect anomalies, further demonstrating
the importance of considering spatial dependencies. In region R3, MTAD-GAT,
GDN, and LSTM-AD all experience false positives, while our model did not ex-
perience any false positives. This proves that our ACVAE can better distinguish
normal and anomalous data.
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Fig. 4. Case study on SWaT dataset. The green elliptical box represents correctly de-
tected anomalies, blue represents missed detections, and red represents false detections.

5 Conclusion

In this paper, we proposed a variational autoencoder based automatic clustering
method for multivariate time series anomaly detection to address the temporal
dynamics and spatial dynamics simultaneously. In the ACVAE framwork, we
designed TCN-GRU as the encoder network to model multi-scale long short-term
time-dependent and mapped the input time series to latent representations. In
the decoder, we used GRU to reconstruct the input and adopted the scheduled
sampling strategy to address cumulative errors. Specifically, in order to model
the similarity between sequences, we applied a Dirichlet process prior on the
latent representations of all sequences, which can achieve automatic clustering.
The experimental results on two public datasets show the superiority of our
ACVAE over other baseline methods.
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