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Abstract— This paper addresses the problem of reliable com-
munications for cooperative learning on Internet-of-Vehicles,
where a large amount of data from users and services needs to
be processed. Previous works have proposed various cooperative
learning schemes, but they often assume that the communications
between vehicles are reliable, without considering how to achieve
this in an Internet-of-Vehicles network. This paper is the first
one that implements an abstract MAC layer using a distributed
deep reinforcement learning scheme, which can directly meet
the reliable communication requirements of cooperative learning
in previous works. Our abstract MAC layer performs two
operations: acknowledgement, which makes sure that all vehicles
can successfully broadcast their messages to all of their neighbors,
and progress, which ensures that each vehicle can receive at least
one message from its neighbors. These operations facilitate vehi-
cles to exchange and update their training models in a cooperative
learning service. Our simulation results show the efficiency and
fairness of our deep reinforcement learning abstract MAC layer.

Index Terms— Abstract MAC layer, cooperative learning,
Internet of Vehicles, deep reinforcement learning.

I. INTRODUCTION

EDGE intelligence has attracted lots of research attention
in recent years, and many cooperative learning methods

have been developed to support various applications in the
Internet-of-Vehicles (IoV) networks [1], [2], most of which
rely on reliable vehicle-to-vehicle communications, such as the
device-to-device communication model seen in [3]. However,
these approaches overlook latency and bandwidth constraints,
which clash with the often unreliable communication environ-
ment in wireless IoV networks. For example, the algorithm
in [4] optimizes federated edge learning via joint data selection
and resource allocation, assuming instantaneous and reliable
communication. Similarly, edge-assisted federated learning

Manuscript received 15 July 2022; revised 19 August 2023;
accepted 18 January 2024. Date of publication 19 February 2024; date
of current version 1 August 2024. This work was supported in part by
the National Natural Science Foundation of China (NSFC) under Grant
62102232, Grant 62122042, and Grant 61971269; and in part by the Shandong
Science Fund for Excellent Young Scholars under Grant 2023HWYQ-007.
The Associate Editor for this article was Z. Xiao. (Corresponding author:
Yanwei Zheng.)

Yifei Zou, Zuyuan Zhang, Congwei Zhang, Yanwei Zheng, and Dongxiao
Yu are with the Institute of Intelligent Computing, School of Computer Sci-
ence and Technology, Shandong University, Qingdao 266237, China (e-mail:
yfzou@sdu.edu.cn; zyzhang2000@mail.sdu.edu.cn; xczhw@mail.sdu.edu.cn;
zhengyw@sdu.edu.cn; dxyu@sdu.edu.cn).

Jiguo Yu is with the Big Data Institute, Qilu University of Technology
(Shandong Academy of Sciences), Jinan, Shandong 250353, China, and also
with the Shandong Laboratory of Computer Networks, Jinan 250014, China
(e-mail: jiguoyu@sina.com).

Digital Object Identifier 10.1109/TITS.2024.3362909

in [5] reduces the burden and delay of federated learn-
ing, assuming stable communication without delays. These
cooperative learning algorithms heavily lean on dependable
communication assumptions. This raises a crucial question for
IoV cooperative learning: how can we ensure stable and effi-
cient communications in IoV networks? This way, the current
cooperative learning methods could be directly applicable.

In this paper, we address this question by introducing
an abstract MAC (absMAC) layer tailored for cooperative
learning within IoV. The concept of the absMAC layer was
initially introduced by Kuhn et al. in 2009 [6], serving as a
means of ensuring reliable communications among devices.
This layer encompasses two crucial operations: acknowledge-
ment and progress. The acknowledgement (ack. for short)
operation signifies the successful broadcast of messages to
all neighboring devices, while the progress (prog. for short)
operation ensures that all nodes receive at least one message
from their neighboring devices. The parameters fack and f prog
denote the timing constraints for accomplishing these ack. and
prog. operations, respectively. The integration of the absMAC
layer offers significant benefits for devising and analyzing
diverse cooperative learning strategies. This framework facili-
tates efficient exchange of learning parameters among agents,
enabling them to locally update their training models. With the
inclusion of the prog. operation, each learning agent receives
at least one message from its neighbors, leading to the update
of its local parameters at least once. On the other hand, the
ack. operation guarantees that each agent’s local parameters
are shared with all neighboring agents, thereby mitigating the
challenge of isolated data islands.

Designing an efficient absMAC layer for IoV networks
involves addressing two critical challenges. Firstly, IoV net-
works are inherently distributed, while optimizing the absMAC
layer efficiency requires a global perspective. Overcoming this
challenge within a limited vehicle knowledge framework is
the primary concern. Secondly, diverse scenarios bring varia-
tions in data distribution, high-level application information
scheduling requirements, and the communication model of
cooperative learning. As a result, the absMAC layer must
exhibit the necessary flexibility. Notably, existing works on
absMAC layer implementation in wireless settings tend to be
centralized and lack specific tailoring to ensure dependable
communication for IoV’s cooperative learning.

In this paper, we address the above two issues by designing
a distributed deep reinforcement learning (DRL) method after
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Fig. 1. The classical communication mode (left side) and our AI-enabled abstract MAC layer (right side).

fully understanding the efficiency and flexibility features of
the communications in IoV networks. Then, based on the
above DRL scheme, a distributed algorithm is presented to
implement our absMAC layer for cooperative learning. In our
algorithm, each vehicle independently makes decisions accord-
ing to its local information while finally an absMAC layer with
global acknowledgement and progress operations are obtained.
Compared with the classical communication mode that relies
on the Road-Side-Unit to provide reliable communications, our
AI-enabled absMAC layer can provide efficient and paralleled
reliable communications, as is illustrated in Fig. 1. Besides,
different from the previous absMAC layer with inflexible
parameters, by setting the states and rewards closely related to
the efficiency and priority of the communications, the newly
designed deep reinforcement learning method dramatically
strengthens the efficiency and flexibility of our algorithm when
facing various scenarios in reality. The detailed contributions
of our paper are summarized in the following:

A. Contribution

To the best of our knowledge, this paper is the first one
implementing the absMAC layer specifically for coopera-
tive learning in the distributed Internet-of-Vehicles networks.
By designing a deep reinforcement learning scheme, in which
the states and rewards are closely related to the efficiency and
priority of the communications in the wireless channel, our
absMAC layer is more efficient and flexible than the previous
solutions. Besides, an application of our absMAC layer for
cooperative learning in IoV is presented. Extensive simulations
are conducted to evaluate the performance of our algorithm
and the comparisons with the previous works show that our
absMAC layer is at least 5 times faster in providing reliable
communications.

B. Organization

The rest of the paper is organized as follows. In section II,
the related work is introduced. In section III, we present the
network model, problem definition, and some basic assump-
tions. In section IV and V, we show the implementation
algorithm of absMAC layer and the application of absMAC

layer on cooperative learning in Internet-of-Vehicles, respec-
tively. In section VI, the simulation results are presented.
In section VII, We conclude our paper.

II. RELATED WORK

A. Cooperative Learning in IoV Networks

Recently, cooperative learning has become a popular way
to handle the massive data of users and to support high-level
applications in IoV networks and some relative areas. For
example, Kong et al. in [1] study how federated learning could
be used for license plate recognition in 5G networks; Manias
and Shami in [2] focus on how to solve the scalability, high
availability, and data privacy problems in intelligent transporta-
tion systems; Zhang et al. in [7] propose a new RL algorithm
for Partially Detected Intelligent Traffic Signal Control (PD-
ITSC) systems to alleviate traffic congestion; Liu et al.
develop FedCPF, an efficient-communication approach for
Customized, Partial and Flexible in [8]; Xu et al. in [9]
combine Monte Carlo tree search (MCTS) and some heuristic
rules to find a nearly global-optimal passing order (leaf node)
within a very short planning time; Similar works in the relative
areas can also be found in [10], [11], and [12]. Note that the
above works are all based on some reliable communication
assumptions, e.g., the device-to-device communication mode
without any delay. There are also some works based on more
realistic communication models, in which the communication
is reliable but with a bounded delay. For instance, the federated
learning applications in [13] require that clients should com-
plete local calculations and model uploads within a defined
delay; Zhou et al. in [14] take the impact of delay into account
on system performance and provide a quantitative standard.
However, none of them have discussed how the delays of the
communications in their work are bounded.

B. Reliable Communications in IoV Networks

In general, the research on vehicular communications
can be divided into two categories according to their reli-
able/unreliable communication modes. By assuming that the
vehicles have reliable communications with each other, the
works in the first category mainly focus on designing efficient
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algorithms for high-level applications, such as Quality of Ser-
vice in [15] and [16], and Cloud-Based framework in [17] and
[18]. In the second category in which wireless communications
are unreliable, a series of algorithms have been proposed based
on the new and complex hardware techniques, to improve
the reliability of the communications and the throughput of
the networks. For example, the MIMO in [19] and [20], the
light communications in [21]. Considering the fact that most
of the existing vehicles prefer the light-weight transceiver for
communications due to the limited space and low cost, this
paper no longer relies on the complex hardware techniques
that require large space and high cost, but try to design
some efficient algorithms (the absMAC layer algorithm) based
on the simple and light-weight transceiver in an unreliable
wireless network. In other words, the existing solutions in IoV
with unreliable communication mainly rely on some complex
and powerful hardware techniques, which are high-cost and
require large space. Whereas, our work ensures reliable and
efficient communications by designing an efficient absMAC
layer algorithm based on the lightweight transceiver.

C. The Development of absMAC Layer

As a useful method to provide communications with
bounded delay, the absMAC lay was first proposed by
Kuhn et al. in [6] in 2009. Later, a variety of works about
the implementation and the usage of the absMAC layer have
been presented under the graph-based interference model [22],
[23], [24], [25], [26] and the physical interference model [27],
[28], [29], [30]. Specifically, in [31], C. Newport studies
distributed consensus with an abstract MAC layer in the radio
network setting and produces new upper and lower bounds
for the consensus problem. Later, this work is extended to a
fault-tolerant one in [23]. In [24], Lynch et al. show the usage
of an abstract MAC layer for the asynchronous leader election
and MIS (maximal independent set) construction problems,
in which only constant messages are required for each node to
complete the leader election and MIS construction. Similarly,
Khabbazian et al. in [25] and Ghaffari et al. in [26] investi-
gate the broadcast and multiple-message broadcast problem
in wireless networks, both of which get the efficient time
complexity. As for the implementation and usage of the
abstract MAC layer in the physical interference model, Yu et
al. show some efficient implementations of the absMAC layer
via physical carrier sensing and inductive coloring in [27]
and [28], respectively. Later, the implementation of the abs-
MAC layer on the dynamic network with/without physical
carrier sensing is presented in [29] and [30], which also
discuss the time complexity of the consensus and local/global
broadcast problem by using their implemented absMAC layer.
However, to the best of our knowledge, previous works rarely
consider how to implement an abstract MAC layer through a
cooperative learning scheme or how the abstract MAC layer
facilitates cooperative learning. Different from the previous
works, our paper is the first one implementing the abstract
MAC layer with a distributed DRL scheme and is specifically
designed to support high-level cooperative learning services.

III. MODEL AND PROBLEM DEFINITION

We consider such a cooperative learning framework on the
Internet-of-Vehicles, in which n nodes are arbitrarily deployed
within a multi-hop wireless network. Each node in IoV can
be a vehicle, a roadside unit, or any device in the smart city
system that connects to the IoV networks and is equipped
with some computing units. When a cooperative learning task
is deployed on the IoV, each node can update its learning
model locally by exchanging the training parameters with
its neighbors via the wireless channel. Then, we formulate
the parameter exchanging process in cooperative learning
on the Internet of Vehicles in the following network and
communication models.

A. Network and Communication Models

We consider a multi-hop wireless network with n nodes
arbitrarily deployed on a two-dimensional Euclidean space.
The running time of nodes in this model is divided into
equal-length synchronization rounds, each of which is suf-
ficient for nodes to send/receive a message. Each node is
equipped with a half-duplex transceiver, which means that
in each round, a node can only transmit or listen in the
wireless channel, but cannot do both simultaneously. R is the
communication range of nodes, and we assume that nodes
within the distance R can communicate with each other by
transmitting/receiving signals via the wireless channel in a
synchronized round. We use the following SINR (signal-to-
interference-plus-noise-ratio) communication model to depict
the process that whether a signal can be decoded by a listening
node.

In each round, the nodes who choose to transmit/receive
are termed as transmitters/receivers for short in our paper.
The signal from a transmitter can be regarded as a vector,
consisting of the strength and phase knowledge of this signal.
The strength of a signal gets weaker with a longer distance
from the transmitter. When the signals from multiple trans-
mitters accumulate at a receiver, the process can be regarded
as the sum of vectors. For a signal from the transmitter u
to the receiver v, it is denoted by the vector S⃗u,v , which not
only includes the strength but also the phase knowledge of the
signal. Whether the signal S⃗u,v can be decoded by the receiver
v is formulated by the following SINR equations.

|S⃗u,v| = Pu · d(u, v)−α, |S⃗W,v| = |

∑
u∈W

S⃗u,v|,

SI N R(u, v) = |S⃗u,v|/(|S⃗W\{u},v| + N ). (1)

In the above SINR equations, Pu is the transmission power
of signal S⃗u,v , W is the set of transmitters in the current round,
N is the ambient noise determined by the environment, and
d(u, v) is the Euclidean distance between u and v. |S⃗u,v| is
defined as the strength of the signal S⃗u,v , which gets weaker
with distance and is also determined by the path-loss exponent
α, a constant determined by the wireless medium and within
2 to 6 in usual. S⃗W,v =

∑
u∈W S⃗u,v is used to depict the

accumulation of signals on the receiver v, and |S⃗W,v| is the
strength of the mixed-signal sensed by the node v. As a
sufficient condition, we say when the strength of a signal from

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 01,2025 at 03:23:01 UTC from IEEE Xplore.  Restrictions apply. 



ZOU et al.: DISTRIBUTED absMAC LAYER FOR COOPERATIVE LEARNING ON IoV 8975

u is β times larger than that of the others plus the ambient
noise at v, i.e. SI N R(u, v) ≥ β, v can decode the signal S⃗u,v ,
where constant β is a hardware-determined threshold larger
than 1.

B. Problem Formulation

Based on the above network model and communication
model, we implement the following absMAC layer, to provide
reliable message exchange for various cooperative learning
services. Specifically, there are two operations in our absMAC
layer: acknowledgement and progress. In an acknowledgement
operation, each node has its message broadcast to all of its
neighbors; and in a progress operation, each node at least
has one message received from its neighbors. The fack and
f prog are used to denote the timing bounds to complete the
acknowledgement and progress operations, respectively.

Our implementation of the absMAC layer can strongly sup-
port parameter exchange in cooperative learning. Let Mv(t)
be the parameter of vehicle v to be shared with its neighbors
in round t . Then, in the round t , vehicle v executes the
abstract MAC layer protocol to broadcast its parameterMv(t).
Obviously, with our absMAC layer implemented, each vehicle
in IoV at least updates its local learning model once within
f prog rounds; and within fack rounds, a vehicle knows all
parameters from its neighbors, according to our definition for
the ack. and prog. operations in the absMAC layer.

To implement an absMAC layer, the policy of the vehicles
in an interval includes their actions (transmit or listen) in each
round of the interval. As has been discussed in our commu-
nication model, on one hand, too many nodes transmitting
synchronously will cause heavy contention and interference
in the wireless channel, which results in the failures of
communications. On the other hand, if the number of nodes
transmitting in each round is not enough, it will take a long
time to complete the ack. and prog. operation, which reduces
the efficiency of our absMAC layer. Thus, an efficient policy
should control the contention and reduce the interference of
the communications in each round, and minimize the running
time of ack. and prog. operations.

For each node v, boolean variable a(v, t) is used to denote
its action in the round t . If v transmits, a(v, t) = 1; otherwise,
a(v, t) = 0. Combining with the SINR model that depicts the
accumulative contention and interference, our problem can be
formulated as minimizing the length of the interval with the
constraints on ack. and prog., given in the following.

minimize |I |
s.t. a(v, t) = 1, a(u, t) = 0, and SI N R(v, u) ≥ β,

∀v ∈ V,∀u ∈ Neighbor(v), ∃t ∈ I

a(u, t) = 1, a(v, t) = 0, and SI N R(u, v) ≥ β,

∀v ∈ V, ∃u ∈ Neighbor(v), ∃t ∈ I

with SI N R(v, u) =
|a(v, t) · S⃗v,u |

(|
∑

w∈V \{v} a(w, t) · S⃗w,u | + N )
,

∀v ∈ V, ∀u ∈ Neighbor(v), ∀t ∈ I (2)

In the above equation, Neighbor(v) is the set of nodes that
are within the transmission range of node v. The first and the

second constraints require that the ack. and prog. operation
for all nodes should be completed within the interval I. Let
a(V, t) = {∪v∈V a(v, t)} be the action set of all the nodes in
the network, and a(V, I ) = {∪t∈I a(V, t)} be the action set
of all the nodes in the interval I , which is also termed as the
policy of nodes in interval I . In this paper, our objective is to
design a distributed algorithm, by running which an efficient
policy a(V, I ) can be generated for the absMAC layer.

1) Knowledge and Capability of Nodes: All nodes syn-
chronously wake up at the beginning of our protocol, and have
a uniform transmission power assumption. In each transmis-
sion, nodes can only get information about the environment
by sensing the channel with the physical carrier sensing and
from its neighbors if the received signal can be decoded. The
number of nodes n, SINR parameters α, β, and N are unknown
for nodes.

IV. DISTRIBUTED IMPLEMENTATION OF ABSMAC LAYER

In this section, we show how our abstract MAC layer is
implemented with a distributed deep reinforcement learning
scheme. Specifically, each of the nodes is deployed with an
independent deep reinforcement learning agent. The agent gets
the necessary information from the environment by sensing
the channel and from its neighbors by decoding the received
signal, to carve its states and rewards for deep reinforcement
learning. Then, the agent chooses an approximate action to
adjust its transmission probability, to make sure the efficiency
and fairness of the communications in our absMAC layer
protocol.

A. Challenges and Solutions

Implementing an abstract MAC layer over an open-access
wireless channel in a distributed manner presents significant
challenges. The primary hurdle is enhancing communication
efficiency among nodes. This is crucial because the efficiency
of communications directly impacts the timing constraints for
acknowledgement and progress operations. Efficient commu-
nication hinges on accurately estimating contention in the
wireless channel. When numerous nodes transmit simulta-
neously, excessive contention leads to message collisions.
Conversely, low contention results in minimal successful trans-
missions. While existing methods employ back-off strategies
to adjust contention exponentially, their flexibility in choosing
optimal parameters for this process is limited. Thus, our
initial algorithmic challenge revolves around each node accu-
rately estimating wireless channel contention and selecting the
most suitable transmission probability based solely on local
information.

The second challenge is how to guarantee the fairness of
communications in the absMAC layer. Lacking fairness will
result in some worst cases, in which a fraction of nodes trans-
mit too many times while the others always keep silent. The
timing bounds fack and f prog in those worst cases will also
be terrible. An intuitive approach is to adjust the transmission
probability of nodes according to their priorities. In other
words, if a node has not transmitted for a long time, its priority
on transmitting should increase. To the best of our knowledge,
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most of the existing works adjust their transmission probability
according to the contention in the wireless channel but ignore
the priorities of transmitters. For example, the algorithms in
[32] chooses a uniform transmission probability for all nodes,
regardless of their priorities. How to build a mapping from
the priority of a node to its transmission probability with the
local information in a distributed environment is the second
challenge.

Note that both of the challenges mentioned above have
special requirements for tuning the transmission probability,
and simultaneously maintaining the efficiency and the fairness
of the communications in our absMAC layer dramatically
increasing the hardness of our algorithm design. Fortunately,
the deep reinforcement learning scheme has its advantage
in selecting the most appropriate answer from a complex
scenario. We find that by the well-designed states, rewards,
and actions, it is possible to adopt a deep reinforcement
learning method to help each node choose the most appropriate
transmission probability. Specifically, by sensing the channel,
each node has a rough estimation of the contention; and with
a reply from its neighbors, each node updates (increases or
decreases) its priority. Then, the states in our DRL method
include the above contention and the priority information; and
the reward in our DRL is determined by the efficiency and
the fairness of communications observed by the node itself
from the environment. With such states and rewards, the DRL
on each node can choose the appropriate action to adjust its
transmission probability. Finally, due to the convergence of
DRL, the transmission probability of each node gets close to
its optimal one.

B. Detailed Description

We implement our abstract MAC layer by the following
algorithm, which consists of successive phases. Each phase
contains two communication stages and one computing stage.
In the first stage, each node v broadcasts its message with the
probability pv . If a node v once broadcasts a message Mv in
the first stage of a phase and then gets a reply for the message
Mv from its neighbors in the second stage of the following
phases, it can be proved that all of its neighbors must have
received its message [27]. Then, the node v chooses a new
message from Fv , which is a queue to store the messages of
v. Additionally, as is discussed in the challenges and solutions
part, the states and rewards of our DRL scheme highly rely
on the contention of the wireless channel and the priority of
each node. Thus, the first and second communication stages
are also used for nodes to get relative information about
the contention and the priority. Then, the DRL algorithm
is embedded in the computing stage, which helps the node
choose its appropriate transmission probability. By executing
our algorithm, each node updates its transmission probability
phase by phase. Finally, all nodes will choose their optimal
transmission probability. The pseudocode of our algorithm is
presented in Algorithm 1.

In the regular communication stage (the first stage, also
termed as RC-stage for short) of a phase, each node v sets
its parameter Xv = 1 or 0 with probability pv and 1 − pv ,

Algorithm 1 Implementation of absMAC Layer
In each phase, node v with Mv and priov does:

1 {M′v , Xv , Signalv , ev} ← RC-stage (Mv);
// Regular Communication Stage

2 {priov ,pv} ← CC-stage (M′v , Mv);
// Cooperative Communication stage

3 {pv} ← CT-stage (Xv ,Signalv ,ev ,priov, pv);
// Computing stage

RC-stage (Mv)
4 Let Xv ← 1 or 0 with probability pv and 1− pv;
5 if Xv = 1 then
6 Transmit the message Mv;
7 sv ← φ and M′v ← φ;

8 else
9 Listen to the channel and sv ← Signalv;

10 if Received a message Mu then
11 ev = 1 and M′v ←Mv;

12 else
13 ev = 0 and M′v ← φ;

14 Output {M′v , Xv , Signalv, ev};

CC-stage (M′v , Mv)
15 Let Yv ← 1 or 0 with probability pv and 1− pv;
16 if M′v ̸= φ and Yv = 1 then
17 Transmit M′v;

18 else
19 listen to the channel;
20 if Received a message M′u which is the same as

Mv then
21 prio← 1;
22 Mv ← a new message from its queue Fv;

23 else
24 priov ← priov + 1;

25 Output {priov, pv};

CT-stage (Xv , Signalv , ev , priov , pv)
26 Statev ← [Xv , Signalv , ev , priov , pv];
27 Rewardv ← ev/priov;
28 kv ← DRL − agent (Statev , Rewardv);
29 Output {kv · pv};

respectively. Initially, we set pv = 1 for each node v, and
our DRL scheme will adjust the value of pv phase by phase
to an appropriate value. If Xv = 1, v transmits its message
Mv with a probability pv; Otherwise, when Xv = 0, it listens
in the channel to sense the strength of the signal, which is
recorded by the parameter Signalv . Additionally, if v decodes
a message Mu from the node u, it sets its message M′v =
Mu , and set ev = 1; Otherwise ev = 0; In the above process,
Xv denotes the action of v in regular communication stage, i.e.,
whether v transmits or listens; Signalv denotes the contention
of the channel if node v chooses to listen; ev denotes whether
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there is a communication succeeded in the current stage. The
output of the regular communication stage is the parameters
M ′v , Xv , Signalv , and ev .

In the following cooperative communication stage
(CC-stage), each node v sets its parameter Yv = 1 or 0 with
probability pv and 1− pv , respectively. If Yv = 1, v transmits
its message M′v with a probability pv; Otherwise when
Yv = 0, it listens in the channel. If it receives the message
M′u that is the same as Mv , we can get the fact that there is
once a time v transmits and its message Mv was received by
the node u in regular communication stage previously. Thus,
v update its priority priov to 1, and select a new message
from its queue Fv to transmit in the following. Otherwise,
the priority of v increases by 1. Note that the priority of each
node is set to be 1 initially. The output of the cooperative
communication stage is the parameters priov and pv .

In both the regular communication stage and the cooperative
communication stage, the actions of nodes are transmitted or
listened once. So, the running time for two communication
stages is 1 round. In the following computing stage (CT-stage),
each node adjusts its transmission probability by executing the
following DRL algorithm.

1) State Space: As the input of the DRL, the selection of
state is of much importance for the convergence and efficiency
of the DRL process. Specifically, a well-designed state space
should not only contain all the information that the agent
needed to take appropriate actions but also be as concise as
possible. A piece of important information missing in the state
may result in the failure of the convergence process, while too
much information dilutes the relationship between the state
and the action and is hard to satisfy in a distributed framework.
As mentioned above, the contention of the channel and priority
of nodes is important for nodes to take the following actions.
When our algorithm is designed, the parameters Signalv and
priov are used to record the contention sensed by v and
the priority of v. Thus, our state includes the parameters
Signalv and priov . Additionally, the state of v also contains
the parameters Xv , ev , and pv , i.e., some information that can
be obtained by v easily. The formulation for the state of v is
given in Eqt. 3

Statev = [Xv, Signalv, ev, priov, pv] (3)

In the above equation, Xv = 0 or 1 indicates that whether v

transmits or listens in the RC-stage; Signalv is the strength of
the signal sensed by the node v in RC-stage; ev indicates that
whether there is a communication succeeded in the RC-stage;
priov is the priority of node v; and pv is the transmission
probability of node v;

2) Action Space: The agent interacts with the environment
by selecting an action from the action space. For each agent,
its behavior in each phase mainly depends on its state in the
current phase and the learning experience so far. In this paper,
we define Actionv as the action vector of the agent in device
v in each phase, which can be expressed by Eq.4

Actionv = [a, a + δ, a + 2δ, a + 3δ, . . . , b] (4)

In the above Equation, 0 < a < 1 and b > 1 are the lower
bound and upper bound of our action space and δ is the gap
between the neighboring actions.

3) Reward: After the agent selects an action, a reward is
returned from the environment. From a statistical view, when
an agent made a good decision, the environment should reward
it with a positive value; on the contrary, when a bad action was
made by the agent, a negative reward will be returned. Thus,
the agents can be motivated to perform good behaviors in order
to maximize the rewards returned from the environment, which
makes the learning process effective.

As mentioned above, efficient and fair communications
are the key point for the implementation of our abstract
MAC layer. And we hope that in each RC stage, there is
communication success and nodes prefer to transmit when
their priorities are small, to avoid the case that a node always
keeps listening for a long time. With such a target, we give
the formal definition for the reward function in Eqt.5.

Rewardv = ev/priov (5)

In the above equation, ev = 0 or 1 indicates whether there is
a communication succeeded, and priov is the priority of the
node v which is set to 1 initially, constantly increases in each
phase, and reset to 1 if the message Mv is received by other
nodes.

C. Details of Our Learning Part

The agent in our Algorithm 1 is implemented by the double
deep Q-network (DDQN) method, which is an evolution of the
DQN, to efficiently handle the massive states in our learning
algorithm. In this part, for a brief description, we use s(t),
a(t), and r(t) to denote the state Statev , the action Actionv ,
and the reward Rewardv of a node v in phase t . Then, the
detailed expression of our DDQN is given in the following:

q ′(s(t), a(t)

| θ)←

(
r(t)+ γ max

a′
q

(
s(t + 1), a′ | θ

))
q(s(t), a(t)

| θ)← (1− α)q(s(t), a(t) | θ)+ αq ′(s(t), a(t) | θ), (6)

in which θ is the DDQN parameters. The parameter α ∈ [0, 1]
is the learning rate of RL, and the parameter γ ∈ [0, 1] is the
discount factor of Deep learning. To update the values of θ at
the phase t , the DQN-based algorithm combining Q-learning
and DNNs has two Q-functions, i.e., a Q-target network
q(st , at |θtarget ) and a Q-train network q(st , at |θtrain). The loss
error between the two Q-functions is minimized following the
experience replay, where a loss function is defined as Eqt.7.

L (θ train )=
∑

(s(t),a(t),r(t),s(t+1))

(
ytarget −q (s(t), a(t) | θ train )

)
,

(7)

with ytarget = r(t)+ γ maxa′ q
(
s(t + 1), a′ | θ target

)
.

However, the DQN-based algorithm may cause a large
deviation in its model due to an overestimation of the values
of the Q-target. To solve this problem, the DDQN algorithm
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Fig. 2. The framework of our double deep Q-network.

decouples the action selection and calculation of the value of
the Q-target, as shown in Figure 2. In the DDQN, the value
of Q-target is calculated by Eqt.8.

q̂ = q
(

s(t + 1), max
a′

q
(
s(t + 1), a′ | θ target

)
| θ−target

)
,

yDDQN
target = r(t)+ γ max

a′
q̂, (8)

where θtarget and θ−target denote the DNN’s parameters of
action selection in the current phase and the last phase.

To balance the exploitation and exploration in our DDQN,
we adopt an ε-greedy scheme, in which an agent randomly
selects an action with probability ε or chooses the action
with the largest reward with probability 1 − ε. By setting
the ε-greedy scheme, our algorithm can avoid falling into a
local optimal solution and make a timely response to network
changes such as the mobility of nodes. In the training process,
our algorithm makes decisions according to the data and
modified its network parameters in an online mode.

V. ABSMAC LAYER FOR COOPERATIVE LEARNING

In this section, we show how our absMAC Layer can
be applied to support collaborative learning in Internet-of-
Vehicles by giving the following example. Consider a scenario
that n vehicles cooperatively train a learning model for high-
level applications. Each vehicle has its own data set and
updates its training parameters from the learning process of its
own data set and receiving new parameters from its neighbors.
By implementing our abstract MAC layer, as illustrated in
Figure 3, each vehicle v broadcasts its parameters by the
acknowledgement operation and receives the parameters of
other vehicles by the progress operation, periodically. Grad-
ually, when more and more local parameters of vehicles are
exchanged by our absMAC layer, the learning model on each
vehicle becomes more and more accurate.

In the following, we give a detailed description of the
application of our abstract MAC layer on each node v with
its data set Ds . The parameter S⃗0(v) is the parameter in its
final learning model, and w0(v) is the weight of S⃗0(v). The
parameter S⃗1(v) is the local parameter periodically learned
by v from its local data set, and w1(v) is the corresponding

weight; Mv is the message of v, which will be broadcast
by the acknowledgement operation. Each time when there is
a local parameter ⟨S⃗1(v), w1(v)⟩ learned, v updates its own
learning model by the Eqt. 9

⟨S⃗0(v)|w0(v)⟩ = ⟨
S⃗0(v)w0(v)+ S⃗1(v)w1(v)

w0(v)+ w1(v)
|w0(v)+ w1(v)⟩,

(9)

and adds the element ⟨S⃗1(v), w1(v)⟩ to the queue F . Note that
F is a first-in-first-out queue, from which the acknowledge-
ment operation selects a message to transmit periodically if F
is not empty.

With an acknowledgement operation, each vehicle can have
its local parameters broadcast to all of its neighbors once;
and with a progress operation, each vehicle will receive the
local parameters from one of its neighbors. When receiving
a message Mu = ⟨S⃗1(u), w1(u)⟩, v updates its own learning
model by the Eqt. 10

⟨S⃗0(v)|w0(v)⟩ = ⟨
S⃗0(v)w0(v)+ S⃗1(u)w1(u)

w0(u)+ w1(u)
|w0(u)+ w1(u)⟩

(10)

With such a framework illustrated in Figure 3, we show
how our abstract MAC layer helps on providing reliable
communications for cooperative learning on the Internet of
Vehicles.

VI. SIMULATION RESULTS

In this section, we investigate the performance of our
absMAC layer with the network parameter varying. Specif-
ically, we mainly observe the maximum and average time
used for the ack. and prog. operations, because the average
time used for the ack. and prog. operations are the most
straightforward and prime metrics that can be observed in the
simulation. A smaller average time indicates that the vehicles
can exchange their messages faster (i.e., within a shorter time)
through the absMAC layer. The maximum time is observed to
make a worst-case guarantee from a statistical view. Then,
we use the ratio and the waiting time of the ack. operation
as the metrics to evaluate the efficiency and fairness of our
absMAC layer algorithm. Specifically, the ratio of the ack.
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Fig. 3. An application of our absMAC layer for cooperative learning in Internet of Vehicles.

Fig. 4. Maximum/average time for the acknowledgement operation when n varies.

for a node v is defined as the ratio between the number
of ack. that v has successfully completed and the number
of phases that our algorithm has been executed by v; the
waiting time of v is defined as the time elapsed since v’s
last successful ack. operation in our algorithm. Considering
the fact that the ack. operation is more complex than the
progress operation, we choose the ratio and the waiting time
of the ack. operation to reflect the efficiency and fairness of
the communications in our algorithm. Smaller the ratio and
waiting time we observe, more efficient the absMAC layer
algorithm is. Besides, when all the vehicles have a similar
ratio and waiting time, we say the absMAC layer algorithm
guarantees the fairness of communications among the vehicles.

A. Implementation of Simulations

We simulate an edge-computing system in a 300m*300m 2-
dimensional Euclidean space, in which n nodes are randomly
and uniformly deployed. n ∈ [500, 2000] in our simulation.
The transmission range R of each node is 30m, to ensure
a multi-hop network environment. In each phase, the nodes
select the message with the maximum age from its queue
to transmit by executing our abstract MAC layer. In our
simulation, γ , lr , ε are parameters in our deep reinforcement
learning, where γ is the learning rate of reinforcement learn-
ing, lr is the learning rate of the neural network, and ε is the
parameter of ε-greedy scheme. The detailed parameters in our
simulation are listed in Table I.

Without loss of generality, over 50 runs of the simulation
have been carried out for each reported result. All experiments
are conducted on a Linux machine with Intel Xeon CPU E5-
2670@2.60GHz and 128 GB main memory, implemented in
python3 and compiled by a Python compiler.

TABLE I
PARAMETER SETTING IN SIMULATION

B. Performance of Our Algorithm

In this part, we present the time used to complete the
ack. and prog. operations in Fig. 4 and Fig.5, respectively.
Additionally, the efficiency and fairness of the communications
in our algorithm are investigated in Fig. 6 and Fig. 7 by
counting the ratio and the waiting time of the ack. operation on
each node. A detailed description and analysis of the Fig. 4-7
are given in the following.

The time bound for the ack. operation is presented in
Fig. 4, in which the x-axes represent the running time of our
algorithm, and the y-axes represent the number of phases used
to complete the ack. operation, and n varies from 500 to 2000,
respectively. From the curves in each of the Fig. 4(a)-4(d),
both the maximum and the average time for the ack. operation
increase initially and keep stable at some low levels after our
algorithm is executed by at least 500 phases, which directly
shows that our algorithm can complete the ack. operation
within a short time; by comparing the curves across the
Fig. 4(a)-4(d), in which the number of nodes varies from
500 to 2000, we can see that the maximum and the average
time used for an ack. operation increase when n gets larger.
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Fig. 5. Maximum/average time for the progress operation when n varies.

Fig. 6. Maximum/average/minimum ratio of the acknowledgement operation when n varies.

Fig. 7. The distribution of vehicles on their waiting time when v varies.

This is because when there are more vehicles, it becomes rarer
for each of them to transmit in the wireless channel. Even in
the worst case with n = 2000, we have the maximum/average
time for the acknowledgement no larger than 150/1000 phases,
respectively in Fig. 4(d), which is a competitive result on the
time cost.

The time bound for the prog. operation is presented in
Fig. 5, in which the x-axes represent the running time of
our algorithm, the y-axes represent the number of phases
used to complete a progress operation, and n varies from
500 to 2000, respectively. From the curves in each of the
Fig. 5(a)-5(d), we can see that the average and the maximum
time used for the prog. operation have a similar tendency to
those of the ack. operation, but keep stable at some smaller
values; By comparing the curves across the Fig. 5(a)-5(d),
with n various from 500-2000, we can see that the average
time for prog. decreases while the maximum time increases
when n gets larger. This is because when there are more
vehicles, it becomes easier for a vehicle to receive a message
from its neighbours. While the maximum time indicates the
worst case, which is more likely to happen when n gets
larger.

To show the efficiency and fairness of our algorithm on
communications, we observe the maximum, average, and
minimum ratios of the ack. operation in simulation, the results
of which are presented in Fig. 6. Specifically, in Fig. 6, the
x-axes represent the running time of our algorithm, y-axes

represent the value of the ratios, and n ∈ [500, 2000]. From
the curves in each of the Fig. Fig. 6(a)-6(d), the average ratio
increases initially and keeps stable later. Even though the value
of the average ratio for a single node is not large when it keeps
stable, considering the total number of nodes, those values are
strong enough to verify the efficiency of our algorithm on ack.
operation; Additionally, the maximum and minimum ratios
indicate the best and the worst cases for the ack. operations
among nodes. From the curves in Fig. 6, we can see that the
maximum and the minimum ratios differ a lot initially, and
get close to each other gradually, which means the fairness
of communications between nodes is gradually maintained
when our algorithm is executed; Finally, by comparing the
curves across the Fig. 6(a)-6(d), as the number of nodes
increasing, the maximum, average, and minimum ratios of
the ack. operation have a similar tendency, but their values
decrease when n gets larger.

To better demonstrate the fairness of our algorithm, Fig. 7
shows the distribution of all the nodes on the waiting time,
which is defined as the time elapsed since the last successful
ack. operation of a node. In Fig. 7(a), we can see that at
least 60% and 80% nodes have their waiting time smaller than
80 and 120 phases, respectively. Even though the waiting time
in Fig. 7(b)-7(d) is very likely to increase when there are more
nodes in the network, we still have the result that at least 60%
and 80% nodes have their waiting time smaller than 150 and
200 phases with n ≤ 2000. With the above histograms in
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Fig. 8. Comparison with previous works on the running time for ack. and prog. operations.

Fig. 9. Comparison with previous works on the ack. ratio.

Fig. 7, we verify the fairness of our algorithm on the ack.
operation.

C. Comparison With Previous Works

In this part, we compare our algorithm with two previous
works in [27] and [30], respectively, in which a statistical
back-off scheme and a leader election & broadcast scheme
are designed to implement the absMAC layer, respectively.
In the following, we compare our work with those two
previous works in terms of the running time for ack. and
prog. operations, and ratio of ack. operation. Our algorithm
and those two previous algorithms in [27], [30] are abbreviated
as absMAC1, absMAC2, and absMAC3, respectively.

Firstly, we show the comparison results on the running time
for ack. and prog. operations in Fig. 8. Specifically, in Fig. 8(a)
and 8(b), the x-axes are the number of nodes and the y-axes
are the time used for the ack. operation. From the curves
in Fig. 8(a) and 8(b), we can see that our algorithm is at
least 10 and 5 times faster than absMAC2 on the average
and the maximum running time for ack. operation, and at
least 5 and 3 times faster than absMAC3 on the average
and the maximum running time for ack. operation. Similarly,
by comparing the curves in Fig. 8(c) and 8(d), we get the
result that our algorithm is about 100 and 40 times faster than
absMAC2 on the average and maximum running time for prog.
operation, and 20 and 10 times faster than absMAC3 on the
average and maximum running time for prog. operation.

Secondly, by observing the average/minimum ratios of ack.
operation, we evaluate the efficiency of the communications
in absMAC1, absMAC2, and absMAC3 in Fig. 9, in which the
x-axes are the number of nodes and the y-axes are the value
of the average/minimum ratio of ack. operation. By comparing
the curves in Fig. 9(a), it can be seen that the average ratio of
ack. in our absMAC1 is at least 2 and 1.2 times larger than
that of the absMAC2 and absMAC3, respectively. Additionally,
for the minimum ack. ratio, our algorithm always has a larger

value than that of absMAC3, and the minimum ack. ratio of
absMAC2 gets close to 0. With the above results observed,
we believe that our algorithm has higher efficiency and fairness
in communications than the previous works in [27] and [30].

D. Conclusion

In this section, by presenting the time cost for ack. and
prog. operations, and comparing with two previous works,
we evaluate the performance of our algorithm. In general, the
timing bounds for ack. and prog. operations increase when
there are more nodes deployed in IoV networks and are
within 200 and 10 phases, respectively, when n ≤ 2000. The
observation of the ratio and the waiting time of ack. operation
verifies the efficiency and fairness of the communications in
our algorithm. By comparison with the work in [27] and [30],
our algorithm is much faster on the ack. and prog. operations,
respectively, with higher efficiency and fairness.

VII. CONCLUSION

In this paper, we implement an abstract MAC layer via a
distributed deep reinforcement learning method, to satisfy the
communication demand of cooperative learning on the Internet
of Vehicles. Specifically, our designed abstract MAC layer can
support the various cooperative learning services by providing
the acknowledgement and progress operations, in which each
vehicle shares its learning result with all of its neighbours, and
receives at least one result from its neighbours to update its
training model, respectively. When carving the states, rewards,
and actions of our DRL scheme, the efficiency and priority of
communications between vehicles are considered as important
features, which results in the efficient acknowledgement and
progress operations in our abstract MAC layer. We hope that
our work can be a bridge between the current cooperative
learning applications that highly rely on reliable communi-
cation assumptions and the open-access wireless channel in
IoV in which the communications are inherently unreliable.
Combining our scheme with some more efficient but complex
communication techniques, such as the multi-channel and
NOMA (Non-Orthogonal Multiple Access) technologies will
be further investigated in our future research.
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