
Computer Communications 205 (2023) 35–44

M
g
Y
a

b

A

K
M
L
W
I

1

o
I
c
s
v
d
p
s
m
a
a
r
p
a
a

c

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

ulti-agent reinforcement learning enabled link scheduling for next
eneration Internet of Things
ifei Zou a, Haofei Yin a, Yanwei Zheng a,∗, Falko Dressler b

School of Computer Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
School of Electrical Engineering and Computer Science, TU Berlin, Berlin, 10587, Germany

R T I C L E I N F O

eywords:
ulti-agent reinforcement learning

ink scheduling
ireless network

nternet of Things network

A B S T R A C T

In next generation Internet of Things (NG-IoT) networks, numerous pieces of information are aggregated from
the user devices and sensor nodes to the local computing units for further computing to support high-level
applications. Those multitudinous transmission demands have raised new challenges for current link scheduling
protocols. The centralized link scheduling protocols are inappropriate in some large-scale NG-IoT scenarios.
The previously distributed link scheduling uses the randomized transmission scheme to avoid interference,
making it hard to utilize the bandwidth resources fully. The multi-agent machine learning (MAML) technique
is a potential approach to finding the most optimal link scheduling strategy. At the same time, the over-large
state space will take a long time for them to approach the optimal solution, which reduces the practicality of
the MAML. To fully utilize the bandwidth resource and improve the efficiency of link scheduling, this paper
studies a multi-agent reinforcement learning enabled link scheduling problem. Different from the conventional
MAML techniques that randomly select a state to do their exploration, in our multi-agent reinforcement
learning algorithm, a good state is firstly obtained within polynomial time steps by executing a distributed
and randomized sub-algorithm. We say a state is good if it is not far from the optimal state. Then, our multi-
agent reinforcement learning scheme starts from the good state and does its exploration with an 𝜀 greedy
scheme, which significantly reduces the time steps to get close to the optimal link scheduling strategy. Extensive
simulations are conducted to investigate the performance of our work.
. Introduction

With the development of communication technology and Internet-
f-Things (IoT) devices, the Next Generation Internet of Things (NG-
oT) has changed our life in its own way [1,2]. Specifically, NG-IoT
onnects massive user devices and sensors to local units with some basic
torage and computing resources (e.g., edge devices in edge computing)
ia the high-speed 5G/6G networks. So, a series of applications can be
eployed on the units that are close to the data resource, which is a
otential architecture to provide users with real-time and intelligent
ervices. In the above framework, the fast transmission of the infor-
ation packets is a fundamental issue, which can be formulated as
link scheduling problem from the view of the network layer. With

n efficient link scheduling algorithm, the frequency and bandwidth
esources in NG-IoT can be fully utilized to deliver the information
ackets so that the information can arrive at its destinations within
short time interval, which strongly supports those time-sensitive

pplications in NG-IoT.
Due to its importance and significance, a series of works have been

onducted on link scheduling problems in the wireless environment.

∗ Corresponding author.
E-mail address: zhengyw@sdu.edu.cn (Y. Zheng).

Generally speaking, the previous link scheduling works can be divided
into two categories: centralized scheduling and distributed scheduling,
according to their working mode. For centralized algorithms, such
as [3,4], the global information can be fully utilized to avoid conflicts
and interference between links so that multiple links can be scheduled
simultaneously at the same time. However, the centralized algorithm
requires lots of global information, which is difficult to be deployed
in large-scale networks. For distributed algorithms, such as [5,6], the
randomized transmission scheme can be used to obtain answers that are
𝑂(log2 𝑛)-approximate and 𝑂(log 𝑛)-approximate to the optimal solution,
respectively. However, due to the stochastic nature of the algorithms,
it is difficult for them to get closer to the optimal solution.

There are also some efficient works that solve the scheduling prob-
lem with the help of some machine learning [7–9] or heuristics tech-
niques [10]. Compared with those randomized and distributed algo-
rithms, the convergence property in ML helps the ML-based algorithm
gets closer to the optimal solution for the link scheduling problem.
Thus, the ML-based solutions can potentially have higher efficiency in
delivering the information packets. However, all the above methods
ttps://doi.org/10.1016/j.comcom.2023.04.006
eceived 31 December 2022; Received in revised form 1 March 2023; Accepted 4
vailable online 6 April 2023
140-3664/© 2023 Elsevier B.V. All rights reserved.
April 2023

https://doi.org/10.1016/j.comcom.2023.04.006
https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.04.006&domain=pdf
mailto:zhengyw@sdu.edu.cn
https://doi.org/10.1016/j.comcom.2023.04.006

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

a
p
h
s
l
l
a
r
m
s
t
t
i
t
t
e
o
a

t
u
e
i
I
c
s
s
f
o

a
c
l
i
g
m
f
T
a
i
a

Fig. 1. Good states have less space to explore than random states.
re performed under centralized conditions, where nodes must have
rior global knowledge during training. No specific training node can
ave global information in the distributed premise. Solving the link
cheduling problem by machine learning is essentially a multi-agent
earning problem with a competitive relationship. In the multi-agent
earning problem, each agent takes specific actions in its current state
nd is influenced by the states and actions of other agents in the envi-
onment to receive certain rewards. In the link scheduling problem, the
utual influence of multiple agents in this environment is particularly

evere. For example, suppose a link is transmitting data when none of
he other links also occupies the current wireless channel. In that case,
he data will be delivered successfully. The communication will fail if
t is surrounded by other links that are also using the wireless channel
o transmit data. This phenomenon is also termed as the contention in
he wireless channel. Suppose we use a single agent to decide whether
ach link should be sent at the current moment. In that case, the reward
f that agent will be determined by a combination of its state, actions,
nd the state and actions of the surrounding nodes.

The global states of multi-agent learning methods grow exponen-
ially with the number of nodes. In NG-IoT, consisting of numerous
ser devices and sensor nodes, the number of states will be too large to
xecute any centralized ML algorithm. Besides, the exploration of ML
n the over-large state space will come across the following challenge.
f a small exploration step is used on the over-large state space, the effi-
iency of exploration will be seriously insufficient, and the convergence
peed will be slow or even cannot be converged. When the exploration
tep is too large, there will be a large amount of space that is not
ully explored, and it is straightforward to miss the optimal solution
r produce serious oscillations.

To overcome the above challenges that the state space in multi-
gent machine learning is over-large while the exploration ability of
urrent multi-agent ML techniques is limited, in this paper, we no
onger let our multi-agent ML algorithm randomly select a state as the
nitial state, but use a distributed randomized algorithm to compute a
ood state as the starting point of our multi-agent ML. A good state
eans that the state of the nodes in multi-agent ML is not far away

rom the optimal solution, i.e., the exploration space has been limited.
hen, we use the exploration capability of the reinforcement learning
lgorithm to explore the optimal solution around the good state. Fig. 1
s an illustration of the difference between the exploration space using
good state and a randomized state.
The detailed contributions of our paper are listed in the following:

36
• To address the problem that the state and action space becomes
over-large for exploration in a multi-agent machine learning sys-
tem with numerous learning agents, which results in a failure
of convergence or a very slow convergence, our work proposes
a new approach in which a good state is firstly computed by
some approximation algorithm within a polynomial time steps
as the initial state of the multi-agent ML. Then, a multi-agent
reinforcement learning scheme is adopted to explore the optimal
result based on the good state. Compared with the previous multi-
agent ML that randomly selects an initial state, our work indicates
that finding a good state as the starting point can reduce the
exploration space and improve the performance of multi-agent
ML on exploration. We hope that the new framework proposed in
this paper can shed some light on designing multi-agent machine
learning algorithms in some complex spaces.

• For the link scheduling problem under the next generation of IoT,
we first formulate it into a multi-agent reinforcement learning
problem. Then, a distributed and randomized algorithm is used
to compute a good state for the following ML process. Finally, a
multi-agent reinforcement learning algorithm is proposed, which
starts from a good state and can get close to the optimal solution
efficiently. Compared with the traditional stochastic algorithm,
our link scheduling algorithm performs better because it can
converge to the optimal solution stably.

The numerical simulations are presented to support our idea in this
paper.

The remaining parts of this paper are organized as follows. In
Section 2, the current work related to wireless link scheduling is intro-
duced. In Section 3, the network model and the link scheduling problem
are formulated. In Section 4, the multi-agent reinforcement learning
algorithm is proposed in detail. In Section 5, extensive simulations are
conducted to verify the algorithm’s performance.

2. Related work

The link schedule problem is usually transformed into a special
problem of set partitioning. Formally, given a set 𝐿 of links, the goal
of the algorithm is to find a minimal division of 𝐿 such that all links in
each set after the division can complete their transmissions in the same
time slice.

Initially, the study of link scheduling problems was often based on
graph models, where the interference of one link to the rest of the

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

a
l
t
t
l
t
m
t
b
t
t

p
i
t
T
o
l
u
a
s
a
m
a
c
p
M
t
r

l
a
i
M
t

s
o
t
m
a
o

3

c
a
s
i
c
t
t
w
i
s

n
t
t
m
f
t

𝑆

links was often reflected in the edge or point weights in the graph.
Related works are [11–13]. Subsequent studies had found that the
graph model is difficult to model the wireless signal accurately, and
the SINR model was first used in [14] to model the wireless link
scheduling, which can deal more accurately with the effect on wireless
interference on transmission. There are many subsequent works that
also use the SINR model for link scheduling, and these works can
be divided into two categories of centralized (e.g., [3,4,15,16]) and
distributed (e.g., [5,6,17–19]) algorithms in terms of working principle.
In terms of computational complexity, [3] had proved that this problem
is an NP-hard problem when the nodes use uniform power.

As for centralized algorithms. In [3], an approximation algorithm
is proposed which maps each link to a unique [2𝑘, 2𝑘+1] based on
the length of the link, and then grids the deployed region based on
the length of each of these links, and then tries to select as many
links as possible in a grid to complete the scheduling. The time of
this algorithm is 𝑂(log𝛥) approximated, where 𝛥 is the ratio of the
longest link to the shortest link. In [4], an approximation algorithm
is proposed. The algorithm first sorts all the links by length, selects a
smaller link each time, calculates the minimum distance between this
link and the current set of already selected links, and then calculates
whether the current link can be added to the set. The algorithm can
achieve an approximate performance of 𝑂(1). Since NG-IoT is often
distributed and large-scale, numerous nodes are directly likely to be in
relatively independent environments, which makes it difficult to apply
these centralized algorithms on it.

As for distributed algorithms. In [5], the maximum average af-
fectance coefficient is introduced to solve the competition problem
in random, and nodes use a fixed probability to send data at each
step according to the maximum average affectance coefficient, and
this algorithm is 𝑂(log2 𝑛) asymptotically optimal. In [6], a distributed
pproximation algorithm is proposed, where the algorithm generates
og2 𝑛 equal probabilities and then lets all links enumerate any one of
he probabilities several times, such that it can be shown that after
he algorithm has finished running, there is a high probability that all
inks have finished scheduling at least once at the location of one of
he probabilities. This algorithm is 𝑂(log 𝑛) asymptotically optimal. As
entioned above, most distributed algorithms are used to coordinate

he interference between links by some adaptive stochastic process,
ut due to the natural uncertainty of stochastic algorithms, this makes
he algorithms often have low performance and some distance between
hem and the optimal solution.

There are also some recent works that solve the link scheduling
roblem with machine learning (ML) techniques, such as [7–9]. Specif-
cally, In [7], a geometric machine learning approach is used to solve
he high mobility link scheduling in device-to-device(D2D) networks.
he local graph around each D2D pair is modeled as a point by a set
f regularized Laplace matrices on a Riemann manifold, and then the
ink scheduling decisions are classified in a supervised learning manner
sing the Riemann metric in a geometric support vector machine
pproach In [8], deep reinforcement learning is used to optimize re-
ource allocation in software-defined networks by adaptive bandwidth
llocation. In [9], a random forest classifier is used to control the
illimeter wave radar to make optimal link selection by user’s location

nd quality of service requirements. These algorithms solve not the
lassical link scheduling problem, but only some specific application
roblems containing the characteristics of the link scheduling problem.
oreover, these algorithms are not distributed algorithms, where all

raining is performed on the same device, and there is a lack of relevant
esearch on distributed link scheduling for multi-agent learning.

Numerous studies have investigated the effectiveness of real-time
earning through environmental information acquisition [20–22]. This
pproach has been found to enhance algorithm performance, including
n the context of the multi-agent reinforcement learning we employ.
ulti-agent reinforcement learning (MARL) has gained increasing at-
ention in recent years as a promising approach to modeling and solving

37
complex problems. In the context of reinforcement learning, the term
‘‘multi-agent’’ refers to scenarios where there are two or more indepen-
dent agents that interact with the environment and potentially with
each other. These agents’ actions are influenced by the environment,
and they may have varying degrees of cooperation or competition with
each other [23]. As a result, MARL has been applied in various settings,
ranging from games and robotics to communication and transportation
systems. For example, some earlier studies have explored how MARL
can help two agents with opposite goals to compete in a shared envi-
ronment, while subsequent research has looked at the potential of this
approach in addressing specific challenges in multi-terminal communi-
cation [24–27]. It is worth noting that in multi-agent environments, the
agents may have diverse options for their next actions. If we treat the
space of all agents and their possible actions as a single entity, the size
of this space will grow exponentially as the number of agents increases
due to the combination of actions. However, a large action space can be
disastrous for the algorithm’s solution process, limiting the scalability
of the number of agents to some extent [28].

3. Model and problem definition

We consider a NG-IoT scenario in which 𝑛 nodes are arbitrarily
deployed in a two-dimensional Euclidean space. 𝑉 is the set of 𝑛 nodes.
For any two nodes 𝑖 and 𝑗, we use 𝑑𝑖,𝑗 to denote their Euclidean
distance. Considering that the devices in NG-IoT always have their
demands on information transmission, we use the set 𝑇 to formulate
such a demand. Specifically, if a node 𝑖 has some information packets
transmitted to 𝑗, we have (𝑖, 𝑗) ∈ 𝑇 , otherwise (𝑖, 𝑗) ∉ 𝑇 . Define the
ize of the set of 𝑇 to be 𝑚. Assume that from each node there is only
ne link with the current node as the sending node. For the case where
he same node has multiple transmission requirements, a time-division
ultiplexing model can be used to complete its required transmissions

t different time periods, which will not be discussed in this paper, in
rder to simplify our model and algorithm design.

.1. Communication model

The information packets are transmitted via a single hop wireless
hannel with physical interference constraint. All nodes transmit in
half-duplex mode, which means that a node can only listen to or

end messages at one moment. The data transmitted between nodes
s divided into packets of the same maximum size, so that all nodes
an use the same time for single packet transmission, and we call
he smallest unit of sending a single packet a time slot. According to
he IEEE 802.11 protocol for wireless communication frames, a single
ireless frame can hold a maximum of 𝑝𝑚 = 2346 bytes of data. That

s, for a data to be transmitted with a size of K bytes, exactly ⌈

𝐾
𝑝𝑚

⌉

uccessful communications are required between nodes.
It is assumed that all communication occurs within a single chan-

el. If there are multiple nodes sending messages simultaneously at
he same moment, then there will be interference between multiple
ransmissions. We use the signal-to-interference-plus-noise ratio (SINR)
odel to measure whether the nodes’ communication can be success-

ully proceed under interference when node 𝑢 sends a wireless signal
o 𝑣. Node 𝑣 can receive messages from 𝑢 if and only if :

𝐼𝑁𝑅(𝑢, 𝑣) =
𝑃∕𝑑𝛼𝑢,𝑣

𝑁 +
∑

𝑖∈𝑆∕{𝑢} 𝑃∕𝑑
𝛼
𝑖,𝑣

≥ 𝛽 (1)

where 𝑁, 𝛼, 𝛽 denote the global ambient noise, the signal fading factor,
and an acceptable threshold determined by the physical device respec-
tively, 𝑆 is the set of nodes that sent messages in the same time slot.
𝑁 is considered as a fixed constant in this paper. 𝛼 is related to the
environment in which the node is located and the physical medium in
which the signal propagates, and can be considered as a constant in a
fixed environment. 𝛽 is also a constant determined by the hardware of
the devices.

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

w
t
w
t

r
t
t
c
a
f
i
s
w
a

g
𝑁
n
i

3

o
s
m
l

t
𝑙
a
n
A

t
t
a
d
t
w
a

n
m
o

𝑙

w
c
n
n
a
s
d

I
t
o

𝑠

All nodes take a uniform power to transmit their information packet,
hich is determined by the transmission radius of the node. If the

ransmission radius is 𝑅, then the transmission power 𝑃 = 𝑐𝑁𝛽𝑅𝛼 ,
here 𝑐 ≥ 1 is a constant that is set with respect to the desired

ransmission rate of the network.
For reliable information transfer, any point-to-point data transfer

equires that, in addition to the sender sending data to the receiver,
he receiver should send an acknowledge (ACK) frame to the sender
o confirm that the current message has been received. That is, for
ommunication from node 𝑖 to 𝑗, we consider a transmission successful
nd correctly completed if and only if 𝑗 successfully receives the data
rame sent by 𝑖 and 𝑖 successfully receives the ACK frame sent by 𝑗. Only
f the sender successfully receives the ACK frame from the sender, the
ender will continue to send the next data frames, otherwise the sender
ill assume that the current data frame was not successfully delivered
nd repeat the data frame again.

In addition to the basic ability to send and receive messages, a
iven node knows the constants needed in communication, including:
, 𝑅, 𝛼, 𝛽, 𝑐 and �̂�, where �̂� is a constant upper limit for the number of

odes and its value should be greater than the number of nodes 𝑛, and
s available to all nodes.

.2. Problem definition

This paper focuses on how to maximize the throughput of continu-
us communication tasks and reduce the transmitting delay of nodes,
o that more communication bandwidth is available between nodes or
ore nodes can be accommodated to complete the communication with

imited radio frequency resources.
In general, we term the communication requirement from a node 𝑖

o a node 𝑗 as a link, denoted by 𝑙𝑖,𝑗 . Let 𝐿 be the set of link, and a link
𝑖,𝑗 ∈ 𝐿 if and only if (𝑖, 𝑗) ∈ 𝑇 . The problem is to choose 𝐿𝑡 ⊆ 𝐿 for
ny time slots group t, where there are two time slots. For any 𝑙𝑖,𝑗 ∈ 𝐿𝑡,
ode i sends the data frame to j in the first time slot and j sends the
CK frame to i in the second time slot.

The optimization objective of the current problem is to maximize
he sum of the available communication bandwidths of the nodes and
o allow any link to maintain a relatively constant bandwidth over

continuous period of time. In other words, the current problem to
eal with is a multi-objective optimization problem where our goal is
o increase the overall bandwidth of the network as much as possible
hile keeping the link communication stable. And we expect to reach
Pareto Optimality solution.

Formally, we use the maximum delay to measure the stability of
etwork communication. The maximum delay 𝑙𝑡𝑔(𝑥) is defined as the
aximum of the maximum delays of all links within a contiguous set

f time slots of length 𝑥, which can be expressed as

𝑡𝑔(𝑥) = max
(𝑖,𝑗)∈𝑇

𝑙𝑡𝑖,𝑗 (𝑥) (2)

here 𝑙𝑡𝑖,𝑗 (𝑥) denotes the maximum delay of the link 𝑙𝑖,𝑗 within a
ontiguous set of time slots of length 𝑥. We define 𝑥 time slot groups are
umbered as 1, 2,… , 𝑥. In the 𝑥 times of communication, we define the
umber of successful link transmissions 𝑛𝑠(𝑥) (abbreviated to 𝑛𝑠 in the
bsence of ambiguity) and the time series 𝑇𝑠(𝑥) = {𝑡1,… , 𝑡𝑛𝑠} at each
uccessful transmission, where ∀𝑖 ∈ [1, 𝑛𝑠), 𝑡𝑖 < 𝑡𝑖+1. Thus, the maximum
elay of 𝑙𝑖,𝑗 can be expressed as the following equation:

𝑙𝑡𝑖,𝑗 (𝑥) =

{

max{𝑡1, 𝑥 − 𝑡𝑠𝑛 ,max𝑖<𝑛𝑠𝑖=1 𝑡𝑖+1 − 𝑡𝑖} 𝑛𝑠 ≥ 1
𝑥 𝑛𝑠 = 0

(3)

n addition, we use the communication success rate of a link over time
o measure the current bandwidth size of the network. The success rate
f 𝑙𝑖,𝑗 :

𝑟𝑖,𝑗 (𝑥) =
𝑛𝑠
𝑥

(4)
38
Table 1
Notations.

Notation items Description

𝑛 Number of communication nodes in the network
𝑉 The set of communication nodes in the network
𝑑𝑖,𝑗 The Euclidean distance between node 𝑖 and node 𝑗
𝑇 The demands on information transmission of the nodes
𝑁 The global ambient noise
𝛼 The signal fading factor
𝛽 Acceptable threshold determined
𝑅 the transmission radius of the nodes
𝑃 The Euclidean distance between node 𝑖 and node 𝑗
𝑐 Constants related to network transmission rate
𝑙𝑖,𝑗 Communication requirement from node i to node j
𝐿 The set of link
𝑙𝑡𝑔 (𝑥) The maximum of the maximum delays of all links

within a contiguous set of time slots of length x
𝑙𝑡𝑖,𝑗 (𝑥) The maximum delay of the link 𝑙𝑖,𝑗 within a

contiguous set of time slots of length x
𝑛𝑠(𝑥) or 𝑛𝑠 The number of successful link transmissions within a

contiguous set of time slots of length x
𝑠𝑟𝑖,𝑗 (𝑥) The success rate of 𝑙𝑖,𝑗 within a contiguous set of time

slots of length x

In summary, the problem studied in this paper can be expressed by
the following equation:

max(𝑖,𝑗)∈𝑇
𝑠𝑟𝑖,𝑗 (𝑥)
𝑙𝑡𝑖,𝑗 (𝑥)

,

𝑠.𝑡.
{

𝐿𝑡 ⊆ 𝐿, ∀𝑡 ∈ N
𝑥 > 1, ∀𝑥 ∈ N

(5)

3.3. Notations table

The Table 1 explains the notations in this paper.

4. Multi-agent reinforcement learning approach

In this section, we present a multi-agent reinforcement learning
algorithm that solves our defined link scheduling problem. Firstly,
we clearly define the state in our multi-agent reinforcement learning
algorithm. Then, we show that how to achieve a good state as the initial
state of our multi-agent reinforcement learning algorithm. Finally,
we show that how our multi-agent reinforcement learning algorithm
proceeds.

4.1. Definition of state

As is illustrated in the SINR model, multiple nodes sending signals at
the same time will interfere with each other, and too much interference
will greatly reduce the success rate of communication. Constraining the
number of sending nodes in the same time slot can effectively reduce
the interference, so we use the probability 𝑝 to control the sending
of nodes, that is, for node 𝑖 in 𝑙𝑖,𝑗 in each time slot, 𝑖 transmits with
probability 𝑝 and keep silent with the rest probability 1 − 𝑝.

Each node has its different environment for communication. Some
nodes have a large number of nodes nearby, while some have a small
number, and the signal strength will be attenuated with the increase
of distance, which means that the interference generated by the sender
seems to be a ‘‘localized’’ phenomenon. When the number of nearby
nodes is small, this means that even with a relatively high probability 𝑝,
the receiving node suffers relatively little interference, which improves
the communication efficiency of the link. When the number of nodes
is large, the interference will prevent the nodes from receiving the
signal properly, so it is important to set 𝑝 smaller to reduce the global
interference and ensure the success rate of communication. Therefore,
the personalized 𝑝 is chosen for each node in order to effectively
improve global communication efficiency.

We define that the current communication probability 𝑝𝑥 used by

node 𝑥 as the current state 𝑠𝑡𝑥 of the node in the algorithm. Then, 𝑆 =

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

n
w
w
t
i

q
b

𝑟

o
o
i

4

t
u
f

P

Fig. 2. Example of weight dictionary.

{𝑠𝑡1,… , 𝑠𝑡𝑛} is the global state of the whole multi-agent reinforcement
learning system. Note that when our algorithm is executed, each node
only knows its own state, and the global state is used only for better
description and analysis. After clearly define the global state of our
multi-agent reinforcement learning, we can see that the state space
exponentially increases when the number of agents gets larger. If we
randomly select a state to start the exploration, it takes a long time to
find the optimal result. Thus, choosing an appropriate global state as
the initial state for exploration is very important.

For a node, its state domain is a continuous space, i.e., 𝑝 ∈ R .
However, such a change has almost no effect on the network when the
values of the two probabilities differ by a small amount. So we consider
discretizing the probabilities to some extent, which reduces the number
of states and thus speeds up the convergence. Specifically, we set a
probability sequence 𝑃 whose size is 𝑑𝑠, where the 𝑖th element is
defined as 𝑝𝑖 = 1∕(4𝑐𝑖−11). In order that the probability of exploration can
be sufficiently small, it should satisfy: 𝑑𝑠 > ⌈log𝑐1 �̂�⌉, where 1 < 𝑐1 ≤ 2 is
a constant that determines the sparsity of the chosen probabilities. For
example, when 𝑐1 = 2 and �̂� = 8, the generated probability sequence
should be 1∕4, 1∕8, 1∕16, 1∕32 (see Fig. 2).

Each node maintains a dictionary of weights, where the key of the
dictionary is each probability value in the above probability sequence
and the value is the estimated value corresponding to this weight. The
current dictionary has 𝑑𝑠 elements, which are listed in order of key
from largest to smallest as {𝑝1, 𝑝2,… , 𝑝𝑑𝑠}, and the corresponding value
as {𝑣1, 𝑣2,… , 𝑣𝑑𝑠}.

4.2. How to achieve a good state

The global state is a permutation of the states of each node, so the
umber of global states grows exponentially with the number of nodes,
hich means that the algorithm will have to explore an immense space,
hich greatly reduces the probability to find a good state, thus making

he exploration process take a long time to reach a state that transmits
nformation efficiently.

In order to find an approximately optimal link scheduling scheme
uickly and with high probability to guarantee that each link can
e scheduled once in a certain time, we use an 𝑂(log 𝑛)-approximate

algorithm to find a good state as the initial state of our multi-agent
reinforcement learning.

Suppose the current node is 𝑢 and the target receiver node is 𝑣.
The 𝜉 is an independent and uniformly distributed random variable
with values [0, 1], and the function 𝑅(𝜉) can sample the current random
variable once. The pseudo-code of the distributed algorithm is shown
as Algorithm 1, where 𝑐0 is a parameter used to guarantee a high
probability of success of the algorithm.

For node 𝑢, at the end of the algorithm run, the algorithm should
populate the dictionary of weights based on the parameters obtained in
the algorithm. In the initialization algorithm, the probability 𝑝𝑖 will run
𝑖 =

4
𝑝𝑖
𝑐0 ln 𝑛 times, thus, the value corresponding to this probability in

the weighting dictionary should be:

𝑣𝑖 =
𝑠𝑟𝑢,𝑣(𝑟𝑖) (6)

𝑙𝑡𝑢,𝑣(𝑟𝑖)

39
Algorithm 1 Initialization algorithm
1: 𝑠𝑛 = 0, 𝑇 = {}
2: for 𝑝 ∈ 𝑃 do
3: for 𝑖 ∈ 4

𝑝 𝑐0 ln 𝑛 time slots groups do
4: if 𝑅(𝜉) < 𝑝 then
5: Send data in the first time slot
6: Listen to ACK in the second time slot
7: if Listened to the ACK from 𝑢 then
8: 𝑠𝑛 ∶= 𝑠𝑛 + 1
9: 𝑇 ∶= 𝑇 ∪ {𝑖}

10: end if
11: else
12: Halt
13: end if
14: end for
15: end for

The above algorithm is similar to the one in [6], with the difference
that additional statistics on the parameters are needed in the current
algorithm, and it has been shown that its algorithm has a high prob-
ability of successful completion. Algorithm 1 can be considered as an
extension of the original algorithm and combined with the analysis of
the original algorithm, in the problem of this paper, the parameters
used in the original algorithm are a subset of the parameters used in the
Algorithm 1, which means that the current algorithm additionally tries
at some probabilities on top of the original algorithm to obtain more
accurate probabilistic information. This does not affect the correctness
and approximation of the algorithm.

In terms of application effects, the algorithm in [6] can only achieve
𝑂(log 𝑛)-asymptotic optimality, and it is difficult to produce further
ptimization because of the randomization limitation, however the
ptimal state found in this way is only the starting state of the algorithm
n this paper.

.3. The MARL based on a good state

As is mentioned above, for each node, it already has a good but not
he best state. Then, a 𝜀-greedy reinforcement learning scheme can be
sed by each node to find a better solution in multiple iterations. The
ramework diagram of the algorithm is shown in Fig. 3.

eriod of iteration. A continuous set of time slice groups 𝑑 is used as
the period of all nodes’ single attempts, i.e., no node will change the
currently selected 𝑝 within a continuous set of 𝑑 time slice groups.
To guarantee the validity of the tries during this period, it should
satisfy 𝑑 ≥ 4𝑁 . At the beginning of each iteration, a probability should
be chosen in this iteration, and at the end, the values in the current
dictionary will be updated using the data accumulated in this iteration.

Selection of probabilities. For each individual node, at the beginning
of the iteration, the algorithm has the probability of 𝜀 to choose a
probability currently considered optimal as the sending probability for
the current time slice, and has the probability of 1 − 𝜀 to choose any
key with equal probability in the current weight dictionary. Formally,
the algorithm has the probability of 𝜀, choosing

𝑝argmax|𝑃 |𝑖=1 𝑣𝑖
(7)

and the probability of 1 − 𝜀 to choose

𝑝DU(1,𝑑𝑠) (8)

where DU(𝑎, 𝑏) denotes a discrete uniform distribution in the interval
[𝑎, 𝑏] with the existence of 𝑎 ≤ 𝑏 and 𝑎, 𝑏 ∈ N.

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

∀

Fig. 3. Diagram of our algorithm framework.
Update the values in the dictionary. In a round of iteration, a link 𝑙𝑖,𝑗
needs to record the number of successful link transmissions 𝑛𝑠 within
the time series 𝑇 = {𝑡1,… , 𝑡𝑛𝑠} at each successful transmission, where
𝑖 ∈ [1, 𝑛𝑠), 𝑡𝑖 < 𝑡𝑖+1. If the probability of the current selection is 𝑝𝑘, the

weight after updating would be:

𝑣′𝑘 = 𝛾 ⋅ 𝑣𝑘 +
𝑠𝑟𝑖,𝑗 (𝑑)
𝑙𝑡𝑖,𝑗 (𝑑)

(9)

where 𝑠𝑟𝑖,𝑗 (𝑑), 𝑙𝑡𝑖,𝑗 (𝑑) is defined in Eq. (4), Eq. (3) respectively and
0 < 𝛾 < 1 is the decay coefficient. A larger decay coefficient can better
preserve the historical information, which is good for maintaining sta-
bility, and a smaller decay coefficient can better obtain the information
of new iterations, which is good for fast convergence.

5. Simulation experiments

In this section, a series of simulation experiments are conducted
to evaluate the convergence of our algorithm, the superiority of the
good state, the performance of the algorithm, and other metrics. The
simulation program is written in C++ programming language, parallel
accelerated using the OpenMP library, and runs on a computer with
32 GB of memory, an Intel i9-12900k processor, and the Windows 11
operating system.

All the links are randomly generated in a square area of size AL×AL.
When generating, first a node is generated as the sender of the link, and
then another node is randomly generated as the receiver in the optional
area based on the minimum length 𝑙min and the maximum length 𝑙max
of the link.

There are some general parameters set in the experiment. As shown
in Table 2. In all subsequent cases, the program is executed with these
parameters.

5.1. Convergence of the algorithm

In this part, we study the convergence of our algorithm. Specifically,
we mainly want to investigate whether our algorithm can converge to
the optimal value in terms of average throughput and maximum latency
when the SINR parameters 𝛼, 𝛽 and node density vary. Here, we use
40
Table 2
Default simulation parameter setting.

Parameters Description Value

R Communication radius 25
N Global ambient noise 1
𝜀 Parameter in 𝜀-greedy scheme 0.02
𝛾 Decay coefficient 0.95
𝑙min Minimum length of link 5
𝑙max Maximum length of link 20
𝑐 Multiplier constant in communication power 2
𝑑 Number of time slice groups in an iteration 800
𝑐0 Constant in Algorithm 1 2
𝑐1 Common ratio weight dictionary 1.25
m Number of links 100
�̂� Upper limit of nodes 200

Table 3
Parameter settings used in the algorithm convergence experiments.

Parameters Description Value

𝛼 SINR signal fading parameter {2, 4}
𝛽 SINR receiving threshold parameter {1.5, 2.5}
AL Deployment area length {100, 200, 400}

Area Length (AL) to denote the side length of the square area where
the node is deployed.

Table 3 is the parameter setting in the current part of the experi-
ment.

The results of the current part of the experiment are shown in
Figs. 4 and 5. The horizontal axis of the graph represents the number
of iterations of the algorithm.

In Fig. 4, the vertical axis is the average throughput of all nodes
in one round of communication. This figure has three subplots, each
representing a different node density. The number of links is fixed here,
what changes is the size of the area where the links are deployed. In
each subplot there are four lines for different 𝛼, 𝛽, representing different
network environments.

Observing the four curves of the three subplots in Fig. 4, we can
see that when 𝛼 is small, the interference generated in the environment
becomes relatively strong, and the average throughput at this time is
relatively small. Vice versa, it is rather large. This is consistent with

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

d

Fig. 4. Average throughput of the algorithm for different 𝛼, 𝛽.
Fig. 5. Maximum delay of the algorithm with the number of iterations for different 𝛽.
the actual situation that the signal fading is enhanced when 𝛼 is larger,
and thus the interference is weakened. When 𝛽 is larger, this receiving
device is more sensitive to interference, so there is a lower average
throughput than a smaller 𝛽, which is also consistent with the actual
situation. From the subplots, we can see that our algorithm can improve
the average throughput to some extent and converge when it reaches
relative stability.

Compared with Fig. 4(a), Fig. 4(b), the enhancement of the rein-
forcement learning algorithm in Fig. 4(a) is relatively small. This is
because, due to the large density of nodes, the distribution has a high
probability of having more nodes within the communication radius
of the node. The node is subject to interference located on a higher
magnitude. At this time, the good state found by the initialization
algorithm has been better selected for the probability of sending. Only a
few local links are distributed more sparsely. The probabilities obtained
by the initialization algorithm have space for further optimization, but
for the global average throughput, this appears to be relatively small.

Comparing these three subplots, we can find that the algorithm can
converge using a shorter number of iterations as the link distribution
becomes sparse. Fig. 4(a), 4(b), 4(c) reach the optimal value and start
converging at about 20000, 10000 and 8000 iterations, respectively. This
is because, as the interference decreases, the link can better obtain the
evaluation of the current transmission probability in the global envi-
ronment rather than the evaluation failing due to severe interference.
As the links become sparser, the average throughput of a single link
becomes larger, which is realistic given the limited wireless resources
of a single channel.

In Fig. 5, the vertical axis represents the maximum value of the
maximum delay among all nodes within one iteration. This part of the
experiment was performed when 𝛼 = 4 and 𝐴𝐿 ∈ {200, 400}, and two
subplots with different 𝛽 are represented.

Each subplot has two curves indicating the maximum latency in
ifferent network area. As seen from the two subplots, in the case
41
of relatively sparse link distribution, the algorithm can effectively
reduce the size of the maximum delay further based on the initialized
algorithm maximum delay and keep it stable after a certain number
of iterations. At AL = 200, where the links are relatively dense, a
small amount of data with sudden growth in maximum latency occurs,
such as in Fig. 5(a) at around 6000 iterations, and in Fig. 5(b) at
around 17 000 iterations. This is because a localized failure in the
reinforcement learning exploration may heavily impact the behaviors
of other nodes in the dense situation.

Through these experiments, we have verified the convergence and
effectiveness of our proposed algorithm when the network parameters
vary.

5.2. Effectiveness of good state

As is mentioned in our algorithm design, starting the exploration
from a good state makes our multi-agent reinforcement learning quicker
to find the optimal solution. In this part, we will verify the above
conclusion by conducting ablation experiments on the part of the
initialization to find a good state. Suppose the existing initialization
algorithm is not used at the beginning. In this case, the value is
undefined in the weight dictionary of each node, and all undefined
values are considered to be −∞ when computing the maximum value.
In other words, the exploration randomly starts from a state. Table 4 is
the parameter setting in the current part of the experiment.

There are eight subplots in Fig. 6, each with a different deployment
environment. There are two curves in each subplot, which indicate with
and without initialization algorithm. The meanings of the horizontal
and vertical coordinates in the figure are the same as those in the
previous part and are not repeated here. Compared with the algorithm
without initialization, the algorithm with initialization has the follow-
ing points: (1) the algorithm using initialization can converge faster,
shown in all subplots. (2) It can bring more throughput over a long time

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44
Fig. 6. Effect of initialization under different 𝛼, 𝛽,AL on the variation of the average throughput of the algorithm with the number of iterations.
Table 4
Parameter settings used in good state experiments.

Parameters Description Value

𝛼 SINR signal fading parameter {2, 4}
𝛽 SINR receiving threshold parameter {1.5, 2.5}
AL Deployment area length {100, 200}

from the beginning of the algorithm, which is evident in 6(f), 6(h). (3)
The algorithm with initialization can converge to higher throughput,
which is evident in 6(b), 6(f).

Through the above experiments, we can find that in various envi-
ronments, the algorithm with initialization converges to the best state
more quickly than the algorithm without initialization, so our choice
to use the initialization algorithm is very meaningful and can achieve
great benefits.

5.3. Performance analysis

After finding the good state, the reinforcement learning algorithm
can be used to make the chosen communication probability more justi-
fied and further reach a better state, thus achieving higher throughput
and lowering the maximum latency.
42
In this part, we study the performance of the reinforcement learning
algorithm after finding a good state. We measure how much improve-
ment can be achieved by continuously iterating and finding a better
state compared to always using the good state.

The average throughput and maximum latency statistics are shown
in Fig. 7, Fig. 8, respectively. The method always using the probability
in good state are termed as the Random Link Scheduling (RLS) and the
method use reinforcement learning to further explore the probability
from the good state is termed as Reinforcement Learning Link Schedul-
ing (RLRS). The two figures compare the performance of the above two
methods.

It can be observed that reinforcement learning algorithms always
deliver performance improvements of 7% to 14% in average through-
put. The exact value that can be improved is related to the layout
of the links in the randomly generated network. In some layouts, the
good state found by the initialization algorithm is already close to the
optimal solution, which leads to little room for further optimization
afterwards. In terms of maximum latency, the algorithm can effectively
reduce the latency per link by a maximum of between 6% and 35%.
This can further ensure the fairness of transmission between links.

Through our experiments, we found that using reinforcement learn-
ing can indeed improve the throughput and reduce the latency of
communication. The key to achieving these improvements is the con-
tinuous game among the nodes to find a transmission probability that
can improve the average throughput and reduce the delay without
causing significant interference to other nodes in the network. In this

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44

p
b
n
t
s
d
u
a

5

g
e
t
w
l
t
f
r

6

I
t
m
t
t
a
n
i
i
r

Fig. 7. Performance statistics of average throughput for different 𝛼, 𝛽,AL.
Fig. 8. Performance statistics of maximum latency for different 𝛽,AL.

rocess, each node continuously adjusts its transmission probability
ased on the success rates and delays of its own transmission and other
odes’ transmissions in the network. The algorithm encourages nodes
o use a higher transmission probability as long as it does not cause
ignificant interference with other nodes. Ultimately, the algorithm
iscovers the optimal transmission probability that maximizes channel
tilization, and this is precisely why reinforcement learning algorithms
re facilitating these improvements.

.4. Experimental conclusions

Through extensive simulation experiments, we verified the conver-
ence of the algorithm proposed in this paper and conducted ablation
xperiments on the initialization part of the algorithm to illustrate
he effectiveness of the initialization part in the algorithm. After that,
e further analyzed the algorithm’s performance in the reinforcement

earning part and counted the magnitude of the optimization in both
he average throughput and the maximum delay after using the rein-
orcement learning algorithm. These simulation experiments provide
ich data to support the effectiveness of our proposed algorithm above.

. Conclusion

This paper studies a link scheduling problem in next generation
nternet of Things networks with multi-agent reinforcement learning
echnique. Different from the traditional stochastic ones that approxi-
ate to the optimal solution with some factors, the machine learning

echnique is helpful in finding the most optimal solution. Whereas
he multi-agent reinforcement learning technique cannot be directly
dopted to solve the link scheduling problem since its state space expo-
entially increases when the number of agents gets larger, which results
n an unacceptable exploring time. To overcome these challenges,
n our multi-agent reinforcement learning algorithm, we first use a

andomized sub-algorithm to obtain a good state within polynomial

43
time steps. Then, our multi-agent reinforcement learning will do its
exploration from the good state. Numerical simulations are conducted
to show that the selection of a good state significantly helps in finding
the most optimal state from the complex state space. Extending our
method to some more complex network scenarios will be our work in
the future.

CRediT authorship contribution statement

Yifei Zou: Investigation, Formal analysis, Writing – original draft.
Haofei Yin: Conceptualization, Methodology, Writing – original draft.
Yanwei Zheng: Project administration, Writing – review & editing,
Validation. Falko Dressler: Data curation, Visualization, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported in part by the National Natural Sci-
ence Foundation of China (NSFC) under Grant 62102232 and Nat-
ural Science Foundation of Shandong, China province under Grant
ZR2021QF064.

References

[1] C. Chen, J. Jiang, Y. Zhou, N. Lv, X. Liang, S. Wan, An edge intelligence
empowered flooding process prediction using internet of things in smart city,
J. Parallel Distrib. Comput. 165 (2022) 66–78.

[2] J. Gou, L. Sun, B. Yu, S. Wan, W. Ou, Z. Yi, Multi-level attention-based sample
correlations for knowledge distillation, IEEE Trans. Ind. Inform. (2022).

[3] O. Goussevskaia, Y.A. Oswald, R. Wattenhofer, Complexity in geometric SINR,
in: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, 2007, pp. 100–109.

[4] B. Huang, J. Yu, D. Yu, C. Ma, SINR based maximum link scheduling with
uniform power in wireless sensor networks, KSII Trans. Internet Inf. Syst. (TIIS)
8 (11) (2014) 4050–4067.

[5] T. Kesselheim, B. Vöcking, Distributed contention resolution in wireless networks,
in: International Symposium on Distributed Computing, Springer, 2010, pp.
163–178.

[6] M.M. Halldórsson, P. Mitra, Nearly optimal bounds for distributed wireless
scheduling in the SINR model, Distrib. Comput. 29 (2) (2016) 77–88.

[7] R. Shelim, A.S. Ibrahim, Geometric machine learning over Riemannian manifolds
for wireless link scheduling, IEEE Access 10 (2022) 22854–22864.

[8] W.-x. Liu, J. Lu, J. Cai, Y. Zhu, S. Ling, Q. Chen, DRL-PLink: Deep reinforcement
learning with private link approach for mix-flow scheduling in software-defined
data-center networks, IEEE Trans. Netw. Serv. Manag. (2021).

http://refhub.elsevier.com/S0140-3664(23)00119-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb4
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb4
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb4
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb4
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb4
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb6
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb6
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb6
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb8

Y. Zou, H. Yin, Y. Zheng et al. Computer Communications 205 (2023) 35–44
[9] C. Tatino, N. Pappas, I. Malanchini, L. Ewe, D. Yuan, Learning-based link
scheduling in millimeter-wave multi-connectivity scenarios, in: ICC 2020-2020
IEEE International Conference on Communications, ICC, IEEE, 2020, pp. 1–6.

[10] D. Yang, K. Gong, J. Ren, W. Zhang, W. Wu, H. Zhang, TC-Flow: Chain flow
scheduling for advanced industrial applications in time-sensitive networks, IEEE
Netw. 36 (2) (2022) 16–24.

[11] G. Sharma, R.R. Mazumdar, N.B. Shroff, On the complexity of scheduling in
wireless networks, in: Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, 2006, pp. 227–238.

[12] L. Jiang, D. Shah, J. Shin, J. Walrand, Distributed random access algorithm:
scheduling and congestion control, IEEE Trans. Inform. Theory 56 (12) (2010)
6182–6207.

[13] C. Joo, X. Lin, N.B. Shroff, Understanding the capacity region of the greedy
maximal scheduling algorithm in multihop wireless networks, IEEE/ACM Trans.
Netw. 17 (4) (2009) 1132–1145.

[14] T. Moscibroda, R. Wattenhofer, The complexity of connectivity in wireless
networks, in: INFOCOM 2006: 25th Annual Joint Conference of the IEEE
Computer and Communications Societies, Barcelona, Spain, 2006.

[15] J. Yu, B. Huang, X. Cheng, M. Atiquzzaman, Shortest link scheduling algorithms
in wireless networks under the SINR model, IEEE Trans. Veh. Technol. 66 (3)
(2016) 2643–2657.

[16] T. Kesselheim, A constant-factor approximation for wireless capacity max-
imization with power control in the SINR model, in: Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2011, pp. 1549–1559.

[17] M. Andrews, M. Dinitz, Maximizing capacity in arbitrary wireless networks in
the SINR model: Complexity and game theory, in: IEEE INFOCOM 2009, IEEE,
2009, pp. 1332–1340.
44
[18] D. Qian, D. Zheng, J. Zhang, N.B. Shroff, C. Joo, Distributed CSMA algorithms
for link scheduling in multihop MIMO networks under SINR model, IEEE/ACM
Trans. Netw. 21 (3) (2012) 746–759.

[19] A. Fanghänel, S. Geulen, M. Hoefer, B. Vöcking, Online capacity maximiza-
tion in wireless networks, in: Proceedings of the Twenty-Second Annual ACM
Symposium on Parallelism in Algorithms and Architectures, 2010, pp. 92–99.

[20] Q. Hu, S. Wang, Z. Xiong, X. Cheng, Nothing wasted: Full contribution
enforcement in federated edge learning, IEEE Trans. Mob. Comput. (2021).

[21] C. Wang, Q. Hu, D. Yu, X. Cheng, Online learning for failure-aware edge backup
of service function chains with the minimum latency, 2022, arXiv preprint
arXiv:2201.06884.

[22] C. Peng, Q. Hu, Z. Wang, R.W. Liu, Z. Xiong, Online learning based fast-
convergent and energy-efficient device selection in federated edge learning, IEEE
Internet Things J. (2022).

[23] K. Zhang, Z. Yang, T. Başar, Multi-agent reinforcement learning: A selective
overview of theories and algorithms, in: Handbook of Reinforcement Learning
and Control, Springer, 2021, pp. 321–384.

[24] M.L. Littman, Markov games as a framework for multi-agent reinforcement
learning, in: Machine Learning Proceedings 1994, Elsevier, 1994, pp. 157–163.

[25] J. Choi, S. Oh, R. Horowitz, Distributed learning and cooperative control for
multi-agent systems, Automatica 45 (12) (2009) 2802–2814.

[26] J. Cortes, S. Martinez, T. Karatas, F. Bullo, Coverage control for mobile sensing
networks, IEEE Trans. Robot. Autom. 20 (2) (2004) 243–255.

[27] D. Kim, S. Moon, D. Hostallero, W.J. Kang, T. Lee, K. Son, Y. Yi, Learning
to schedule communication in multi-agent reinforcement learning, 2019, arXiv
preprint arXiv:1902.01554.

[28] P. Hernandez-Leal, B. Kartal, M.E. Taylor, A survey and critique of multiagent
deep reinforcement learning, Auton. Agents Multi-Agent Syst. 33 (6) (2019)
750–797.

http://refhub.elsevier.com/S0140-3664(23)00119-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb11
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb11
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb11
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb11
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb11
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb20
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb20
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb20
http://arxiv.org/abs/2201.06884
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb22
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb22
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb22
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb22
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb22
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb24
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb24
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb24
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb25
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb25
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb25
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb26
http://arxiv.org/abs/1902.01554
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb28
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb28
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb28
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb28
http://refhub.elsevier.com/S0140-3664(23)00119-6/sb28

	Multi-agent reinforcement learning enabled link scheduling for next generation Internet of Things
	Introduction
	Related Work
	Model And Problem Definition
	Communication Model
	Problem Definition
	Notations Table

	Multi-Agent Reinforcement Learning Approach
	Definition of state
	How to achieve a good state
	The MARL based on a good state

	Simulation Experiments
	Convergence of the algorithm
	Effectiveness of good state
	Performance Analysis
	Experimental conclusions

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

