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Abstract. It could be of great difficulty and cost to directly apply
complex deep neural network to mobile devices with limited computing
and endurance abilities. This paper aims to solve such problem through
improving the compactness of the model and efficiency of computing.
On the basis of MobileNet, a mainstream lightweight neural network,
we proposed an Adaptive Tensor-Train Decomposition (ATTD) algo-
rithm to solve the cumbersome problem of finding optimal decomposi-
tion rank. For its non-obviousness in the forward acceleration of GPU
side, our strategy of choosing to use lower decomposition dimensions
and moderate decomposition rank, and the using of dynamic program-
ming, have effectively reduced the number of parameters and amount of
computation. And then, we have also set up a real-time target network
for mobile devices. With the support of sufficient amount of experiment
results, the method proposed in this paper can greatly reduce the num-
ber of parameters and amount of computation, improving the model’s
speed in deducing on mobile devices.

Keywords: Tensor decomposition · Parameter compression ·
Quantization · Mobile target detection

1 Introduction

In recent years, deep convolution neural network has been widely applied to the
computer science including image identification, natural language processing and
speech recognition [1]. It has made significant breakthrough in solving various
tasks. For example, AlexNet [2] achieved an accuracy in classification 8.7% higher
than traditional methods in the 2012 ILSVRC [3] competition. With the growing
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application of VGGNet [4], GoogLeNet [5] and ResNet [6], artificial intelligence
has caught up with and even surpassed human intelligence in classification of
massive image data, which can be seen from the fact that the error rate of top-5
classification for ILSVRC has been as low as 3.5% while that for human eyes is
about 5.1%.

In order to improve the performance of neural network models, researchers
generally design deeper and more complex networks [7]. Deeper networks will
greatly increase the number of parameters and amount of computation, and will
thus make higher demands on hardware resources (CPU, GPU memory, and
bandwidth). As a result, setting up a deep learning system is quite expensive
and the cost has become an obstacle for deep neural networks to deal with
assignments with limited computing resource or high real-time requirement.

To deploy large-scale convolutional neural network on edge devices, the prob-
lem of limited memory space and computation ability needs to be solved. Studies
[8] have shown that there are a large number of redundant structures and param-
eters in the convolutional neural network, especially in the fully connected (FC)
layer. The redundant parameters contribute little to the final result, so the net-
work structure and parameters can be compressed to reduce the model size and
speed up the computation.

There are five methods to compress and accelerate deep neural network. (1)
Parameter pruning, which finds the redundant neurons and removes them [9].
(2) Parameter sharing, which maps multiple parameters with high accuracy to
a single parameter with low accuracy using a certain rule [10]. (3) Low-rank
decomposition, which decomposes the large matrix into the product of several
approximate kernel matrices to reduce the computation [11]. (4) Designing com-
pact convolutional filters, which reduces the computation and parameters of
convolution by redesigning the operation steps or methods of convolution kernel
[12]. (5) Knowledge distillation, which transfers knowledge from large network
to compact distillation model [13,14].

In this paper, we focus on the low-rank decomposition. In 2013, Denil [15]
et al. analyzed the effectiveness of low rank decomposition in solving the redun-
dancy problem of deep neural networks. Jaderberg et al. [16] uses the low rank
decomposition technique of tensor to decompose the original convolution kernel
into two smaller convolution kernels. Using the classical tensor decomposition
algorithm CP [17], the parameter tensor can be decomposed into the sum of sev-
eral smaller rank one matrices. Using the Tucker decomposition [18], the param-
eter tensor can be decomposed into the product of a core tensor and several
smaller tensors. Using Tensor-Train decomposition [19], the original parameter
tensor can be decomposed into the product of multiple matrices, as shown in
Fig. 1. Compared with CP and tucker decomposition, Tensor-Train decomposi-
tion has a more compact structure, and the representation of matrix multiplica-
tion makes the compressed tensor easier to operate.

At present, most of the rank of Tensor-Train decomposition is set by adjust-
ing parameters empirically. The decomposition ranks of each layer need to be
determined manually, and there are many layers in a neural network. It is
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Fig. 1. Tensor-Train Decomposition. A 3D m × n × p matrix is approximately decom-
posed into some small into the product of several small matrices. The sum of calculation
amount of the small matrices is less than that of the original matrix.

difficult to achieve low precision loss and high compression ratio at the same
time. This paper proposes an Adaptive Tensor-Train Decomposition (ATTD)
method. After presetting a precision and the decomposition dimension, singular
value decomposition (SVD) is used to directly calculate the optimal decompo-
sition rank. Only one parameter – the precision – needs to be adjusted in the
whole process. We summarize our contributions as follows:

– Based on the work of Tensorizing Neural Networks (TNN) [20], we propose an
ATTD algorithm which can adaptively compute the optimal decomposition
rank of each layer of network. Compared with the manual adjustment method,
this method leads to the smaller accuracy loss and the larger compression
ratio.

– We use the improved ATTD algorithm to further compress the depthwise sep-
arable convolution that is widely used in the current mainstream lightweight
networks.

– By combining the compression and acceleration strategy with the quantitative
algorithm, a lightweight target detection network based on MobileNet is built
on mobile devices. It has nearly doubled the model acceleration effect.

The remainder of this paper is organized as follows. Section 2 discusses the
related work about the neural network compression. In Sect. 3, the ATTD model
is presented. Section 4 provides the experimental results. Section 5 concludes this
paper and outlines the future work.

2 Related Work

This section discusses the compression and acceleration methods in deep neural
networks.

Parameter Pruning. Parameter pruning reduces the amount of model parame-
ters by deleting redundant parameters in neural network. For unstructured prun-
ing, [9,21,22] all reduced the amount of network parameters while ensuring a
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certain accuracy. In order to solve the problem that unstructured pruning would
cause a large number of unstructured sparse connectivities, researchers have pro-
posed methods based on structured pruning [23–25], which, while directly com-
pressing the neural network, have effectively accelerated the computing speed of
the entire model.

Parameter Sharing. Parameter sharing aims to map multiple parameters with
high accuracy to a single parameter with low accuracy using a certain rule.
Parameter quantization uses low-precision data type to replace the original 32-
bit full-precision floating-point [26–28]. The binarization method uses binary
weights to represent the parameters or activation functions of the model [29–31].
Methods such as hash function [15] and structured linear mapping [16] enable the
parameter of the FC layer to be shared, which significantly reduces the memory
needed for neural network.

Low-Rank Decomposition. Applying matrix or tensor decomposition algo-
rithms to convolutional and FC layers can compress and accelerate deep neural
networks [32]. The classical tensor decomposition algorithms such as CP [33]
decomposition, Tucker [18] decomposition, and Tensor-Train [19] decomposition
all decompose the original parameter tensor with low rank. In [17], the low rank
filter with rank 1 is constructed by cross channel and filter redundancy. [34]
finds the exact global optimizer of the decomposition, and proposes a method
for training low-rank constrained Convolution Neural Networks (CNNs) from
scratch. [35] attempts to reduce spatial and channel redundancy directly from
the visual input for CNN acceleration.

Designing Compact Convolutional Filters. SqueezeNet [36] replaces the
original convolution structure with the Fire Module structure, which can sig-
nificantly compress the model parameters. Google’s MobileNet [37] replaces the
original convolution with depthwise separable convolution which is of a smaller
amount of computation and parameters; ShuffleNet [38] uses group convolution
and channel shuffle to design a new convolution structure. Both have reduced
the amount of model parameters and computations.

Knowledge Distillation. The mean idea of knowledge distillation is to dis-
tillate certain knowledge from a complex teacher model to a simpler student
model. The compression and acceleration strategy based on knowledge distilla-
tion [13,14,39,40] can convert knowledge of large-scale networks to small-scale
ones, which effectively reduces the amount of computation than the original
network.

3 The Proposed Method

3.1 Compress Traditional Network by TT Decomposition

High-order tensors in practice are generally sparse, and direct operations between
tensors will waste a lot of computing resources. Decomposition of high-order ten-
sors can effectively reduce the amount of computation. The principle of Tensor-
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Train [19] decomposition is to represent each element in a high-dimensional ten-
sor as a matrix multiplication. The Tensor-Train decomposition form of tensor
A can be written as:

A(i1, i2, ..., id) = G1(i1)G2(i2)...Gd(id), (1)

where Gk(ik) is a matrix of rk−1 × rk, and the dimension of tensor A is d,
so the number of matrices obtained by decomposition is also d. The result of
multiplying several matrices represents an element in tensor A. To ensure that
the final result is a scalar, we set r0 = rd = 1.

Figure 1 shows the Tensor-Train decomposition process of a 3D tensor. Any
element in tensor A, like A321, can be written in the form of continuous mul-
tiplication of 3 matrices. Here, the decomposition rank of the Tensor-Train is
set to (1, 3, 3, 1), and the size of each matrix is rk−1 × rk, which of the example
mentioned before are 1×3, 3×3, 3×1, respectively. The position of each matrix
in Gk is determined by the element’s subscript ik ∈ [1, nk], which is 3, 2, and 1,
respectively. The original tensor has a total of 5× 4× 5 = 100 parameters, while
after compression, there are a total of 1 × 3 × 5 + 3 × 3 × 4 + 3 × 1 × 5 = 66
parameters.

3.2 Adaptive Tensor-Train Decomposition

The decomposition algorithm based on Tensor-Train is able to significantly com-
press the parameters of the FC layers and convolutional layers, but practically,
the Tensor-Train decomposition rank r1, ..., rk−1 of each layer of the network
needs to be set manually (r0 = r1 = 1). If there are n layers to be compressed,
n(k − 1) decomposition ranks will have to be adjusted. If the k and n are large,
there will be lots of parameters that need to be set manually, and it will be
difficult to set the optimal decomposition rank to obtain a relatively high com-
pression rate while ensuring a small loss of accuracy.

The larger singular value will determine the main feature of the original
matrix. The Tensor-Train decomposition considers the larger singular value and
ignores the smaller singular value, that is, only the main feature is considered and
the secondary feature is ignored. Thus, Tensor-Train decomposition precision is
positively correlated with the singular value. The larger the singular value, the
greater the contribution to the precision. Inspired by this, we define the precision
as

ε ≈
∑rk

i=1 σi∑n
i=1 σi

, (2)

where ε is the ratio of the selected top rk singular values to the sum of all singular
values, σi is the singular value of i, and σi ≤ σi−1.

According to Eq. 2, using ATTD algorithm with the preset precision ε, the
optimal decomposition rank at a current accuracy can be directly computed
according to the pre-trained network after the decomposition dimension d is set,
as shown in Algorithm 1 .
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Algorithm 1. ATTD Algorithm
Input: A, d, ε
Output: [G1, ..., Gd]

1: B = A, r0 = 1, P =
∏d

s=1 ns

2: for k = 1 to d − 1 do
3: Sleft = rk−1nk, Sright = P

rk−1nk
,

B = reshape(B, [Sleft, Sright])
4: Apply ε − truncated SVD on B: [Uk, Σk, Vk] = SV D(B)
5: P = P

rk−1nk
rk

6: Gk = reshape(Uk, [rk−1, nk, rk])
7: B = ΣkVk

8: end for
9: Gd = B

10: return TT-Cores [G1, ..., Gd].

The whole process only needs to adjust one parameter of ε. Given the value
of ε, how many singular values participate in the decomposition is determined.
That is, the decomposition ranks of each layer are determined. We do not have
to adjust the decomposition ranks of each layer manually.

3.3 Depthwise Separable Convolution Based on ATTD

Fig. 2. Tensor-Train Decomposition. A 3D n1×n2×n3 matrix is approximately decom-
posed into some small into the product of several small matrices. The sum of calculation
amount of the small matrices is less than that of the original matrix.

Google proposed depthwise separable convolution in MobileNet, which sepa-
rates the convolution into two steps: depthwise convolution and pointwise convo-
lution. According to the statistics [37], 95% of the computations and 75% of the
parameters in MobileNet come from 1×1 convolution, and the overall distribu-
tion of weight parameters roughly conforms to a normal distribution. There are
a large number of parameters whose value is around 0, which does not contribute
to the network, so 1×1 convolution has a large number of redundant parameters.

Suppose the shape of convolution kernel parameter matrix is 1× 1×M ×N ,
where M and N are the numbers of input and output feature map channels,
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thus the total parameter of 1×1 convolution is MN . The parameter matrix can
be regarded as a FC matrix. We use the adaptive Tensor-Train decomposition
algorithm to compress it. The specific steps are:

(i) Transform the convolution kernel matrix of current layer into a tensor A

with dimensions (m1n1, ...,mdnd), where
∏d

i=1 mi = M ,
∏d

i=1 ni = N .
(ii) Apply the adaptive Tensor-Train decomposition algorithm to A to obtain

the kernel matrix Gk[mk, nk].
(iii) Decompose M with the same way in step (ii) to obtain matrix

X (x, y,m1, ...,md), where
∏d

i=1 mi = M . After tensor operation, we obtain
the output feature map Y(x, y, n1, ..., nd), where

∏d
i=1 ni = N .

The operation process of 1×1 convolution can be shown as:

Y(x, y, n1, ..., nd) =
k∑

i=1

k∑

j=1

∑

m1,...,md

X (x, y, m1, ..., md)G0G1[m1, n1]...Gd[md, nd] (3)

The depth separable convolution after the introduction of Tensor-Train
decomposition is shown in Fig. 2.

3.4 Improvement of Inference Speed and Optimization of GPU

After the addition of the adaptive Tensor-Train decomposition module, the
actual inference speed is not significantly improved compared to the original
model although the amount of parameters and computation of the model has
significantly reduced. The main reasons are as follows:

(i) Tensor-Train decomposition decomposes a large parameter matrix into sev-
eral compact 3D tensor forms, also known as matrix product states. Such
small tensor operations cannot effectively use the GPU’s parallel computing
capabilities for large matrices.

(ii) The adaptive Tensor-Train decomposition algorithm tends to find a decom-
position method with a higher decomposition dimension, which will cause
increasing small 3D tensors after decomposition, and a larger decomposi-
tion rank, which will lead to parameter redundancy.

(iii) The order of computing irregular matrix after decomposition will affect
the final computation amount theoretically. The difference in computation
amount between the worst and the best order varies from several times to
several tens of times.

For problems (i) and (ii), we adopt a strategy of low decomposition dimension
and moderate decomposition rank. For problem (iii), after training the model,
we use dynamic programming to compute the optimal matrix operation order
of each layer and adjust them. The principle of the algorithm is:

(i) Let A[i : j] = AiAi+1...Aj , where A[i : j] denote the product of the i-th
matrix to the j-th matrix. For k(i ≤ k < k), the computation amount of
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A[i : j] is: the sum of there computation amount including the computation
amount of A[i : k] and that of A[k + 1 : j], and the amount of computation
multiplied by the two. Let P [i − 1] and P [i] be the dimensions of the i-th
matrix.

(ii) Let C[i][j] be the amount of computation required for the optimal order of
computation of A[i : j], then:

C[i][j] =

{
0, if(i == j)

min{C[i][k] + C[k + 1][j] + P [i − 1]P [k]P [j]}, i ≤ k < j
(4)

(iii) Update the cost matrix C[i][j] and the marking matrix S[i][j] = k from
the bottom up.

(iv) Return the optimal computation method of C[i][j] according to the sepa-
ration operation provided by S[i][j].

4 Experiments

4.1 Datasets

CIFAR-10 contains 50,000 training pictures and 10,000 test pictures, both in
a total of 10 categories. We use this dataset to verify the adaptive Tensor-Train
decomposition algorithm’s ability of neural network parameter compression.

COCO dataset is currently the mainstream target detection dataset. We built
a target detection network based on our proposed method on mobile devices to
verify the feasibility and effectiveness on COCO.

4.2 Implementation Details

On CIFAR-10 dataset, we use the SGD optimizer with momentum = 0.9. The
batchsize is set to 32, and the initial learning rate is 0.1. After 100 iterations,
drop the learning rate 10 times every 20 iterations. In order to verify the com-
pression ability of the algorithm on the FC layer and the convolutional layer,
we designed 3 structures in this chapter: the network dominated by the FC
layer, the network dominated by the convolutional layer, and a classic network
composed of both layers. Use adaptive Tensor-Train decomposition algorithm to
compress the above 3 models, where the Tensor-Train decomposition ranks are
set manually and initialized randomly. Set ε from 0.7 to 0.98, and set d = 3.

On the pre-trained MobileNet V1 and V2 [41] models, we use the adaptive
Tensor-Train decomposition algorithm to compress the deep separable convolu-
tion. The parameter settings remain unchanged.

4.3 Effectiveness of Proposed Method

Effectiveness on Traditional Network. Table 1 shows the results that
Tensor-Train decomposition works well on compressing the FC layers where the
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Table 1. Results of accuracy and compression ratio of different network structures

Network Average acc Compress rate

FULLY(base) 84.8% 1

FULLY(TT) 1 84.6% 20.32

FULLY(TT) 2 83.9% 43.35

FULLY(TT) 3 82.8% 82.74

CONV(base) 90.2% 1

CONV(TT) 1 88.1% 2.28

CONV(TT) 2 86.9% 2.64

CONV(TT) 3 85.3% 3.72

CONV+FULLY(base) 91.21% 1

CONV+FULLY(TT) 89.01% 43.41

CONV+FULLY(ATTD) 88.94% 65.45

Note: Base represents the uncompressed network, FULLY repre-
sents the network dominated by FC layers, CONV represents the
network dominated by the convolutional layers, CONV+FULLY
represents the classic network composed of FC layers and con-
volutional layers, TT represents the network compressed by
Tensor-Train decomposition algorithm, and ATTD represents
the network compressed by ATTD algorithm.

effect reaches up to 83 times, and the accuracy loss of the network is about 2%.
The compression effect of this algorithm on the convolutional layer is unsatisfac-
tory with only 2 to 4 times, and the accuracy drops quickly, with the accuracy
loss reaching about 5%. This is because the parameters of the convolution layer
are far less than that of the fully connected layer, so the compression effect is
limited. The compression rate of the classic network can reach 43.41 times, and
the accuracy loss is reduced by about 1.2%.

The adaptive Tensor-Train decomposition algorithm surpasses the manual
adjustment method in accuracy and compression ratio of the model. Within
similar accuracy decline (about 1.3%), the compression rate of adaptive Tensor-
Train decomposition algorithm can reach about 65 times, greatly exceeding the
result of 43 times of the CONV+FULLY model.

Effectiveness on MobileNet. As Table 2 shows, for MobileNet V1, when the
value of ε is 0.9, the parameter amount of the model is reduced by about 3
times, the model accuracy is reduced by about 1.6%, and the theoretical com-
putation (Multi-Adds) is nearly halved, but the improvement of inference speed
is insignificant.

For MobileNet V2, when the value of ε is 0.9, the parameter amount of the
model is reduced by about 4 times, computation amount is reduced by more
than half, and the model accuracy is reduced by about 1.8%, but the inference
speed is also not significantly improved compared to the original model.
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Table 2. Comparison of V1 and V2 before and after compression when ε = 0.9

Network Acc Params MAdds FPS ε Compr

MobileNet V1(base) 94.23% 4.2M 569M 1053 1

MobileNet V1(ATTD) 92.63% 1.3M 305M 1196 0.9 3.28

MobileNet V1(ATTD Re) 92.51% 0.9M 181M 1582 0.9 4.6

MobileNet V2(base) 95.49% 3.4M 300M 1141 1

MobileNet V2(ATTD) 93.78% 0.78M 141M 1365 0.9 4.32

MobileNet V2(ATTD Re) 93.72% 0.59M 98M 1694 0.9 5.8

Note: The accuracy, parameter amount, computation amount, inference
speed and compression rate of MobileNet V1 and V2 when value of ε is
0.9.

Table 3. Comparison of V1 and V2 before and after compression when ε = 0.9

Network FPS

MobileNet V1(base) 1053

MobileNet V1(ATTD Re) 1582

MobileNet V1(ATTD Re Quan) 2443

MobileNet V2(base) 1141

MobileNet V2(ATTD Re) 1694

MobileNet V2(ATTD Re Quan) 2801

After fine-tuning the ATTD algorithm and improving the operation order of
parameter matrices, the inference speed of the two models has been significantly
improved, with FPS reaching 1582 and 1694 respectively, and the amount of
parameters has also decreased.

Quantitative technology has a significant effect in acceleration on the infer-
ence speed of neural networks. As Table 3 shows, quantization technology enables
the model to achieve an inference speed acceleration of about 2 times, which is
of great significance for mobile and embedded devices.

5 Conclusion

In this paper, the application of the Tensor-Train decomposition algorithm in
model compression and acceleration is reviewed and studied. The algorithm is
applied to the mainstream lightweight neural network MobileNet, during which
some improvements are made in terms of its advantages and disadvantages. As
a result, our method has increased the efficiency of the model and reduced the
memory needed. In addition, we have also built a target detection network based
on this algorithm on mobile devices, through which we verified the feasibility and
effectiveness of our algorithm and strategy on mobile CPUs.
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