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Abstract—Person reidentification (ReID) is an important
application of Internet of Things (IoT). ReID recognizes pedes-
trians across camera views at different locations and time, which
is usually treated as a ranking task. An essential part of this task
is the hard sample mining. Technically, two strategies could be
employed, i.e., global hard mining and local hard mining. For the
former, hard samples are mined within the entire training set,
while for the latter, it is done in mini-batches. In literature, most
existing methods operate locally. Examples include batch-hard
sample mining and semihard sample mining. The reason for the
rare use of global hard mining is the high computational com-
plexity. In this article, we argue that global mining helps to find
harder samples that benefit model training. To this end, this arti-
cle introduces a new system to: 1) efficiently mine hard samples
(positive and negative) from the entire training set and 2) effec-
tively use them in training. Specifically, a ranking list network
coupled with a multiplet loss is proposed. On the one hand, the
multiplet loss makes the ranking list progressively created to
avoid the time-consuming initialization. On the other hand, the
multiplet loss aims to make effective use of the hard and easy
samples during training. In addition, the ranking list makes it
possible to globally and effectively mine hard positive and nega-
tive samples. In the experiments, we explore the performance of
the global and local sample mining methods, and the effects of
the semihard, the hardest, and the randomly selected samples.
Finally, we demonstrate the validity of our theories using various
public data sets and achieve competitive results via a quantitative
evaluation.
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I. INTRODUCTION

INTERNET of Things (IoT) has been pervasive in recent
years, and many IoT applications have been well developed.

Among these applications, person reidentification (ReID) is
extensively studied. Specifically, ReID recognizes pedestrians
across camera views at different locations and time [1]. ReID
underpins many crucial applications in video surveillance,
such as long-term cross-camera tracking [2], content-based
image retrieval [3], video retrieval [4], multicamera behav-
ior analysis [5], etc. But ReID has been a challenging task
due to the variation of illuminations, occlusions, viewpoints,
background clutters, and image resolutions [6].

Recent studies usually treat ReID as a ranking task [7]–[13],
which can be solved using three kinds of frameworks depend-
ing on how many samples are considered at a time in the
loss function. The pointwise approach uses the classification
network [14]–[18] to classify images into person categories,
and then extracts features to calculate and rank the similari-
ties of images. In this method, a multiclassifier is used to learn
the ranking scores, and the ranking is produced by combin-
ing the outputs of the classifiers [19]. The pairwise approach
uses the Siamese network [20]–[24]. It takes two images as
inputs and then generates either a similarity score between
the two images or a classification of an image pair, which
depicts either the same pedestrian or a group of different
pedestrians. Its main focus is on how to effectively con-
catenate the cross corresponding pairs into one. The listwise
approach uses the triplet [7], [9], [11], [25], quadruplet [26],
or DeepList [27] framework. The triplet network uses three
images as the inputs—usually an anchor, a positive (matched
with the anchor), and a negative (mismatched with the anchor)
images—and outputs features by improving the loss function
that minimizes the distance of the matched images, while max-
imizes that of the mismatched ones. The quadruplet network
is an improvement over the triplet. Comparing with the triplet
loss, the quadruplet network uses another pair of mismatched
images to get a larger interclass variance and a smaller intr-
aclass variance. DeepList implements a listwise loss function
and uses a ranking list to train samples.

An essential part of ranking task learning is the hard sam-
ple mining [28], [29]. Although these models have achieved
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Fig. 1. Hard sample mining. Images with red and green boundary denote
positive and negative gallery samples, respectively. (a) Hard negative sample
mining with a threshold. The negative samples are the batch-hard samples
that are closer to the probe image than a threshold. (b) Hard negative sample
mining with the semihard samples. The semihard samples are the negative
samples that are the closest to the probe image but further away than their
corresponding positive samples from the probe image. (c) Hard sample mining
with the ranking list. The closer to the top of the lists, the harder is the sample.

impressive results on existing ReID data sets, there are still
some problems.

1) Some researchers mine the hardest samples from a mini-
batch. Hermans et al. [29] randomly sampled classes and
images for a batch and selected the hardest positive and
negative samples within the batch to form the triplets,
which is called batch hard. Kong et al. [30] selected the
hard samples whose scores are higher than a threshold,
as shown in Fig. 1(a).

2) Some others think that the hardest sample in a mini-
batch leads to bad local optimal solutions in training.
Schroff et al. [28] chose the negative samples that are the
closest to the anchors but further away than the positive
samples from the anchors, which are called semihard
samples, as shown in Fig. 1(b). A negative sample can
be a semihard sample of multiple positive ones, or it
may not be a semihard sample of any positive samples.

Chen et al. [26] chose the negative samples that have a
smaller distance than an adaptive margin. These are local
mining methods that are based on a mini-batch and do
not consider the global sample relationship based on the
entire data set.

3) The triplet loss [28] pays more attention to obtain the
correct orders on the training set, whereas the quadru-
plet loss [26] can achieve a larger interclass variance.
However, they treat each sample equally, which neglects
the implicit priority between samples.

In this article, we introduce a listwise ranking network,
called LoopNet, where a positive and a negative ranking list
are preserved for global hard sample mining. The positive
and negative lists are sorted by the distance in descending
and ascending orders, respectively, as shown in Fig. 1(c), and
hence the hardest positive and negative samples are all at the
tops of their respective lists. The list is updated online, i.e.,
when a batch of samples is trained in an iteration, the order of
these samples is sorted again with the altered distance. This
ensures that the selected samples at the top of the list are
always the hardest ones. In addition, the ranking lists are the
output of the distance calculation layer (near the end of the
network) and the input of the sampling layer (the beginning
of the network), which constructs a loop network (as LoopNet
for short).

Building the ranking list requires every probe sample to
traverse every gallery sample, which is time consuming and
unacceptable. To address this problem, we propose a multiplet
loss, which is capable of using multiple positive and nega-
tive samples as a whole group to conduct training. By using
multiple gallery samples for each probe image, we can con-
currently use some mined hard samples and some randomly
selected ones in a mini-batch. Then, the randomly selected
samples could be added to the list, so that the ranking list is
initialized progressively. The multiplet loss also considers the
priority of samples for each identity, which leads the harder
samples to have greater effects.

In summary, the main contributions of this article are
threefold.

1) We propose a loop network with a ranking list, which
can be used to choose the hard positive and negative
samples globally.

2) We introduce a multiplet loss that uses multiple posi-
tive and negative samples for each identity, which can
initialize the ranking list progressively and update it in
real time.

3) We explore the performance of the global (in ranking
list) and local (in a mini-batch) sample mining meth-
ods, and the effects of the semihard samples, the hardest
samples, and the randomly selected samples.

The remainder of this article is organized as follows.
Section II discusses the related work about the loss function
improvement and hard sample mining in ReID. In Section III,
the LoopNet model is presented, including the ranking list
model, the multiplet loss design, the sample matching, and
the backpropagation calculation. Section IV introduces some
details of the implementation, including the progressive build-
ing of the ranking list, and the network pipelines. Section V
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provides the experimental results. Section VI concludes this
article and outlines the future work.

II. RELATED WORK

A. Loss Function Improvement

In listwise ranking learning methods, many triplet loss func-
tions with different networks are designed. Ding et al. [9] fed
three images into the network, where two images belonged to
one person and the third image did not belong to anyone. Then,
the loss function was devised to make the L2 feature distance
of the matched pair smaller than the mismatched pair in each
triplet. Cheng et al. [7] designed another loss function to train
the network models in order to make the distance between the
matched pairs less than a predefined threshold and less than the
mismatched pairs in the learned feature space. Liu et al. [31]
focused on parts of person image pairs after taking a few shots
of them and adaptively comparing their appearances in triplet
networks. Wang et al. [11] used two subnetworks for a pair of
input images, and then two single-image representations and a
cross-image representation were calculated. Finally, the triplet
comparison objectives were combined to improve matching
performance. Another improvement in [11] was that a learned
metric rather than the traditional Euclidean distance was used
for the triplet loss.

Zhou et al. [32] used the point-to-set (P2S) metric to replace
the point-to-point (P2P) distances, which jointly minimized the
intraclass distance and maximized the interclass one. In that
triplet loss, the distances of the two-positive-image pair and
the two-negative-image pair were decreased, while that of the
positive-negative-image pair was increased.

Chen et al. [26] designed a quadruplet loss, where a new
mismatched image with the probe was added to the triplet
tuple to increase the distance from the negative pairs, which
led to a model output with a larger interclass variance and
a smaller intraclass variance compared to the triplet loss. In
addition, a normalized 2-D output that was generated by a
fully connected layer and Softmax was used as the distance
metric in [26].

Wang et al. [27] replaced the image pairs with ranking lists
as training samples and developed a listwise loss function with
an adaptive margin to assign larger margins to harder nega-
tive samples. In it, the Plackett–Luce permutation probability
model [33] and the likelihood loss function were used in the
ListMLE [34] training method. It is worth noting that this
method was based on the single-shot assumption, i.e., only
one gallery image had the same identity as the probe image.
Chen et al. [8] proposed a learning-to-rank loss to minimize
the costs corresponding to the poor rankings of the gallery, in
which the similarity differences between positive and negative
matching images were accumulated.

B. Hard Sample Mining

Hard sample selection is a crucial and difficult task for
fast convergence [28]. Ahmed et al. [22] randomly selected
a negative set to train the network, and then the trained model
was used to select the hard negative pairs to retrain the fully

connected layer of the network. This is an offline hard sample
mining method, and it is time consuming in the training stage.

The online hard sample mining methods usually choose hard
samples in a mini-batch. Hermans et al. [29] randomly sam-
pled images for a batch and selected the hardest positive and
negative samples within the batch to form a triplet, which was
called batch hard. Wang and Gupta [35] first randomly chose
the negative samples for ten epochs, and then calculated the
loss of all negative matches in a batch, and finally selected
the top K ones with the highest losses. In FaceNet [28], all
anchor-positive pairs were used in a mini-batch, while the
negatives with the farther distances than the positives were
selected, which were called semihard samples. Xiao et al. [56]
proposed a margin sample mining loss, where the maximum
distance of the positive pairs and the minimum distance of the
negative pairs in a batch were selected to calculate the final
loss.

The threshold is another strategy to mine hard samples.
Chen et al. [26] used the combined mean of the positive pair
distances and negative pair distances to set an adaptive thresh-
old to mine the hard samples. Wang et al. [27] introduced an
adaptive shifting parameter in a listwise loss function, which
could assign larger margins to harder negative samples.

Some set-based methods are used for reranking approaches.
Liu et al. [36] eliminated the hard negative label matches based
on the reciprocal nearest neighbor. Zhong et al. [37] calculated
the k-reciprocal nearest neighbors of R, and the union part of
the (1/2)k-reciprocal nearest neighbors of each candidate in
R to recall the hard positive gallery images.

Some probability or weight updating methods are used to
control the influence of hard samples. Ye et al. [38] introduced
a label reweighting scheme to filter out the false positives
and easy negatives. In metric learning, Zhou et al. [39] used
the local hard negative samples to provide tight constraints to
fine-tune the metric locally. Li et al. [20] updated a proba-
bility score according to the previous epoch to increase the
selection probabilities of those negative samples that are not
selected over a long time. Triantafyllidou et al. [40] thought
that the model should learn easier positive samples first and
then the harder ones. They determined a positive sample’s
difficulty level using a score produced by the network and
progressively added slightly harder positive samples to the
training set. Dong et al. [41] first generated easy samples
and then improved the poorly initialized model. As the model
becomes more discriminative, challenging but reliable samples
are selected.

III. LOOPNET MODEL

Our LoopNet is based on the ranking list, so we first intro-
duce the positive and negative ranking list model. Then, the
multiplet loss is presented. Finally, the sample matching and
backpropagation problems are introduced.

A. Ranking List

The ranking list is designed to mine hard samples efficiently.
If we use the distance between an anchor (probe image) and
a gallery image to measure the similarity of two images, the
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distance between the anchor and the hard positive samples
should be larger than the easy positive sample, whereas that
between the anchor and the hard negative sample should be
smaller than the easy negative sample, i.e., the hard positive
sample is farther from the anchor, whereas the hard negative
is closer to the anchor. Because the rules of hard positive and
negative samples are different, we build two ranking lists for
both of them. The positive and negative lists are sorted by the
distance in descending and ascending orders, respectively, and
thus the hardest positive and negative samples are at the tops
of the respective lists.

Because each person has many images, we need to identify
each image when building a ranking list. If there are np and ng

images in the probe and gallery sets, respectively, the permu-
tation numbers of two sets are np! and ng!, respectively. We
arbitrarily choose a permutation as the standard one to define
the identity of the image.

Suppose the probe permutation is P = <p1, p2, . . . , pnp>,
and the gallery one is G = <g1, g2, . . . , gng>, where pi and gj

are the ith and the jth image of the selected probe and gallery
permutations, respectively. The label of each image of pi and
gj, which is the identity of one person rather than the identity
of an image, is represented as id(pi) and id(gi), respectively,
and the distance between pi and gj is f (pi, gj).

After defining these symbols, the positive ranking list can
be defined as

π+
i = <π+

i (1), π+
i (2), . . . , π+

i

(
m+)

>

s.t. id
(

pπ+
i (k)

)
= id(pi)

f
(

pi, pπ+
i (j)

)
≥ f

(
pi, pπ+

i (j+1)

)
(1)

where i is the image index in the selected probe permutation,
and π+

i (k) is the image index of the selected gallery permu-
tation at position k in the ranking list. For example, given
the fifth probe image list π+

5 = <4, 7, 3>, then π+
5 (2) = 7

denotes that the seventh gallery image is in the second posi-
tion in the list, and (π+

5 )−1(7) = 2 denotes that the second
position in the ranking list is the seventh image in the selected
gallery permutation. The condition id(pπ+

i (k)) = id(pi) ensures
the gallery images in the list of the ith row have the same
label with its probe image π+

i , where k = 1, 2, . . . , m+.
The condition f (pi, pπ+

i (j)) ≥ f (pi, pπ+
i (j+1)) ensures that the

positive ranking list is sorted in a descending order, where
j = 1, 2, . . . , m+ −1. The gallery images in the ith row, which
have the same label with the ith probe image, are less than
the images in the gallery set, which means that m+ < ng.

Similarly, the negative ranking list is defined as

π−
i = <π−

i (1), π−
i (2), . . . , π−

i (mn)>

s.t. id
(

pπ−
i (k)

)
�= id(pi)

f
(

pi, pπ−
i (j)

)
≤ f

(
pi, pπ−

i (j+1)

)
. (2)

The condition id(pπ−
i (k)) �= id(pi) ensures that the gallery

images in the list of the ith row have different labels from
its probe image π−

i , where k = 1, 2, . . . , m− and m− < ng.
The condition f (pi, pπ−

i (j)) ≤ f (pi, pπ−
i (j+1)) ensures that the

negative ranking list is sorted in an ascending order, where
j = 1, 2, . . . , m− − 1

According to these definitions, the harder the sample is, the
closer it is to the top of the list, i.e., π+

i (j) and π−
i (j) are

harder than π+
i (k) and π−

i (k), respectively, when j < k.

B. Multiplet Loss

Inspired by the quadruplet loss [26], we design a multi-
plet loss to achieve a smaller intraclass variance and a larger
interclass variance. In addition, the multiplet loss also con-
siders the priority of samples for each image. Finally, the
multiplet loss also supports hard sample mining, which will
be discussed in Section IV.

For the multiplet loss, we choose n positive images and
n negative images from the gallery set for one anchor in a
mini-batch, which combine to form a (2n + 1) − tuple of
<pi, g+

i,1, g+
i,2, . . . , g+

i,n, g−
i,1, g−

i,2, . . . , g−
i,n>, where pi, g+

i,j, and
g−

i,k are the probe, positive gallery, and negative gallery sam-
ples, respectively, and n is the dimension in the multiplet loss.
The probe sample, the jth positive sample and the jth nega-
tive sample combine to form a triplet <pi, g+

i,j, g−
i,j>, and the

triplet and the (j + 1)th negative sample combine to form a
quadruplet <pi, g+

i,j, g−
i,j, g−

i,j+1>. The idea of the multiplet loss
is to distance negative images from positive images, and dis-
tance the negative images from each other at the same time,
which is shown in

Li =
n∑

j=1

[
f
(

pi, g+
i,j

)
− f

(
pi, g−

i,j

)
+ αj

]

+

+
n−1∑

j=1

[
f
(

pi, g+
i,j

)
− f

(
g−

j , g−
i,j+1

)
+ βj

]

+ (3)

where [x]+ = max{x, 0}.
If the dimension of the multiplet loss is n = 1, (3)

transforms into the triplet loss.
The thresholds αj and βj are the minimal margins between

the positive and negative pairs, respectively. The bigger the
threshold is, the stronger the item constraint is. If g+

i,j and g−
i,j

are harder than g+
i,j+1 and g−

i,j+1, respectively, the thresholds
should be subjected to αj ≥ αj+1 and βj ≥ βj+1. We design a
gradually decreasing threshold sequence, which is shown in

αj = 1

j
α, βj = 1

j
β (4)

where α and β are the two basic constants.
The threshold of the quadruplet item should be smaller than

that of the corresponding triplet item, because it is a rela-
tively weaker auxiliary constraint. Thus, the constants should
meet the requirement of α ≥ β. In our experiments, the dis-
tance measurement of f (p, g) is normalized to the interval
of [0, 1], and so we set the constants to α = 1.0 and
β = 0.5.

Ideally, the positive and negative samples should be mined
from the positive and negative ranking lists, respectively, i.e.,
they are calculated, respectively, by (5) and (6). However, this
operation requires the ranking lists to be well initialized, so
the distances between the probe sample and each gallery sam-
ples should be calculated first, which is time consuming and
unacceptable. In Section IV, we will discuss the strategy to



SHENG et al.: MINING HARD SAMPLES GLOBALLY AND EFFICIENTLY FOR PERSON REIDENTIFICATION 9615

build the ranking list progressively.

g+
i,j = gπ+

i (j) (5)

g−
i,j = gπ−

i (j). (6)

C. Backpropagation

Let I{x} be the indicator function that takes a value of 1
when x is true, and otherwise takes a value of 0. Then, the
partial derivatives are calculated by

∂Li

∂f
(

pi, g+
i,j

) =
n∑

j=1

I
{

f
(

pi, g+
i,j

)
− f

(
pi, g−

i,j

)
+ αj > 0

}

+
n−1∑

j=1

I
{

f
(

pi, g+
i,j

)
− f

(
g−

j , g−
i,j+1

)
+ βj > 0

}

(7)

∂Li

∂f
(

pi, g−
i,j

) = −
n∑

j=1

I
{

f
(

pi, g+
i,j

)
− f

(
pi, g−

i,j

)
+ αj > 0

}

(8)

∂Li

∂f
(

g−
j , g−

i,j+1

) = −
n−1∑

j=1

I
{

f
(

pi, g+
i,j

)
− f

(
g−

j , g−
i,j+1

)
+ βj > 0

}
.

(9)

IV. PIPELINE OF LOOPNET

In this section, we introduce the LoopNet pipeline and
discuss some details of the designed layers.

A. Pipeline

The pipeline is shown in Fig. 2, and it contains the following
steps.

1) The sampling layer simultaneously mines the hard sam-
ples from the ranking list and randomly chooses samples
from the shuffled samples, and then outputs the image
data and person labels.

2) A general network, such as GoogLeNetv3 [42],
ResNet50 [43], etc., is used to train the model to
represent the implicit pattern characters of the input
samples.

3) A fully connected layer with 384 outputs is used to
extract the features of the input samples.

4) The features are sent to another fully connected layer
(classifier) to map to the person classification space,
and then the Softmax loss is used to measure the error
between the classification and the person label.

5) The features and person labels are also sent to a pair-
ing layer, in which they are paired to generate the pair
distances and pair labels.

6) The pair distances are normalized to the interval [0, 1]
by a Softmax layer.

7) The normalized pair distances are ranked to generate the
ranking list in the ranking layer.

8) The multiplet loss layer constructs multiplets using the
normalized pair distances and measures the error with
pair labels.

TABLE I
STRUCTURE OF THE LOOPNET

9) The multiplet loss and Softmax loss are combined to
form a final loss with equal weight, which is shown in
(λ = 0.5)

LF = λLS + (1 − λ)LM (10)

where LF, LS, and LM are the final loss, the Softmax
loss, and the multiplet loss, respectively.

One of the outputs of the network is the ranking list, and the
ranking list is also the input of the network, which constructs
a loop network. In the LoopNet, the sample layer chooses
samples from the ranking list. The sample layer is the first
layer of the network and does not have parameters to train.
In addition, the sample layer only needs the sample orders in
the ranking list. Therefore, the sample layer does not need the
previous layer to provide residual for calculating the partial
derivative. Hence, the cycle is broken between the ranking list
and the sample layer in backpropagation.

The structure of the LoopNet is shown in Table I, where
the final loss layer is a fictitious layer, which is implemented
by the loss weight parameter of the loss layer. The size of the
input image is 224 × 112 (height × width).

B. Sampling Layer

As mentioned in Section III-B, the ideally hard sample min-
ing method of (5) and (6) is time consuming for the ranking
list initialization. Our goal is to achieve hard sample mining,
but avoid the image by image calculation for the ranking list
initialization.

To achieve this, we propose a gradual initializing and updat-
ing method for the ranking list. Suppose there are m+ and m−
images in the positive and negative ranking lists, respectively,
and the multiplet loss needs n positive and negative samples.
At the beginning of training, m+ = 0 and m− = 0 hold. At
some iteration of the training, m+ and m− can be any value
that may be less than the number of positive and negative
images in the gallery set. We randomly generate two numbers
s+ and s− for each mini-batch that denote the numbers of
hard positive and negative samples to mine, respectively, and
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Fig. 2. Pipeline of the LoopNet model. The sample layer chooses an anchor, mines some hard samples, and randomly chooses some samples to compose a
mini-batch. A batch contains many mini-batches. After feature extraction, the hard positive and negative samples are paired with their anchor to compute the
distances. Then, they are packed into multiplets to calculate the multiplet loss. The features are also classified with a Softmax layer to obtain a Softmax loss.
The final loss is the combination of the multiplet loss and the Softmax loss. The blue and orange lines are the positive and negative samples chosen from the
shuffled samples, respectively. The red and green lines are the positive and negative samples chosen from the ranking list, respectively.

they are subject to the constraints in (11). Then, we mine s+
positive and s− negative samples, and randomly choose the
remaining (n − s+) positive and (n − s−) negative samples to
form the multiplet. The newly selected samples that are not in
the ranking list will be added in the list in the ranking layer,
which achieves the progressively initializing and updating of
the ranking list

0 ≤ s+ ≤ min
{
m+, n

}
0 ≤ s− ≤ min

{
m−, n

}
. (11)

The formal description of the sampling is shown in

g+
i,j =

{
gπ+

i (j), if j ≤ s+

gtj , if j > s+

s.t. 1 ≤ tj ≤ ng, id
(
gtj

) = id(pi)

∀tj /∈ {
π+

i (1), . . . , π+
i

(
s+)

, ts++1, ts++2, . . . , tj−1
}

(12)

where tj is a random number, pi is the ith probe image, and
ng is the number of gallery images, and in

g−
i,j =

{
gπ−

i (j), if j ≤ s−

gtj , if j > s−

s.t. 1 ≤ tj ≤ ng, id
(
gtj

) �= id(pi)

∀tj /∈ {
π−

i (1), . . . , π−
i

(
s−)

, ts−+1, ts−+2, . . . , tj−1
}

id
(

g−
i,j

)
�= id

(
g−

i,k

)
(k = 1, 2, . . . , j − 1) (13)

where tj is a random number and pi is the ith probe image.
It is important to note that the number of positive gallery

images ng is likely to be less than the dimension n in
some data sets. In this case, we simply repeat the “hard-
est” sample n–ng times to meet the requirement, which is

shown in

g+
i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gπ+
i (1), if j ≤ n − ng, m+ > 0

gπ+
i (j−n+ng+1), if n − ng < j ≤ m+ + n − ng

gt1 , if j ≤ n − ng, m+ = 0
gtj−n+ng

, if m+ + n − ng < j ≤ n

s.t. 1 ≤ tj ≤ ng, id
(
gtj

) = id(pi)

∀tj /∈ {
π+

i (1), . . . , π+
i

(
s+)

, ts++1, ts++2, . . . , tj−1
}

(14)

where tj is a random number and pi is the ith probe image.

C. Pair Images

The sampling layer organizes the samples in a mini-batch,
as shown in Fig. 3(a), where a probe image is followed by n
positive samples and is then followed by n negative samples.
Before the multiplet loss calculation, a pair layer is designed to
construct the image pairs and compute their distances, includ-
ing f (pi, g+

i,j), f (pi, g−
i,j), and f (g−

i,j, g−
i,j+1) that are used in (3),

which is shown in Fig. 3(b). The Euclidean distance is used
to calculate the function f (•).

Suppose the pair layer is the lth layer, and the error terms of
the next layer are δ(l+1) = <δ

(l+1)
1 , δ

(l+1)
2 , . . . , δ

(l+1)
3n−1>. Then,

the error terms of this layer are calculated by

δ(l)
pi

=
n∑

j=1

δ
(l+1)
k

∂f
(

pi, g+
i,j

)

∂pi
+

n∑

j=1

δ
(l+1)
n+k

∂f
(

pi, g−
i,j

)

∂pi
(15)

where δ
(l)
pi denotes the error term of pi of the lth layer

δ
(l)
g+

i,j
= δ

(l+1)
k

∂f
(

pi, g+
i,j

)

∂g+
i,j

(16)
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(a)

(b)

(c)

Fig. 3. Pair images. (a) Mini-batch samples. An anchor is followed by
n positive samples and n negative samples, which form the mini-batch. (b)
Image pairs. Each sample is paired with the anchor, and each negative sam-
ple is paired with its previous negative sample. (c) Multiplet loss triplets
and quadruplets. The columns with red and blue masks are the triplets and
quadruplets, respectively.

where δ
(l)
g+

i,j
denotes the error term of g+

i,j of the lth layer

δ
(l)
g−

i,j
= δ

(l+1)
n+k

∂f
(

pi, g−
i,j

)

∂g−
i,j

+ δ
(l+1)
2n+k

∂f
(

g−
i,j, g−

i,j+1

)

∂g−
i,j

I{j < n}

+ δ
(l+1)
2n+k−1

∂f
(

g−
i,j−1, g−

i,j

)

∂g−
i,j

I{j > 1} (17)

where δ
(l)
g−

i,j
denotes the error term of g−

i,j of the lth layer.

The pairs are combined into triplets and quadruplets in the
multiplet loss layer, which are shown in Fig. 3(c) with red and
blue masks, respectively. The symbols under each column are
the thresholds in (3) and (4).

D. Rank Samples

As mentioned in Section IV-B, we mine s+ positive and s−
negative hard samples, and randomly choose (n− s+) positive
and (n − s−) negative nonhard samples in a mini-batch. We
gradually initialize the ranking list and update it iteration by
iteration in the ranking layer.

At the beginning of training, the positive and negative rank-
ing lists are all empty. After an iteration, the sample that is in
the ranking list is updated by the newly computed distance,
and the sample that is not in the ranking list is appended to the
list. Then, the positive and negative ranking lists are sorted by
a Bitonic sorting method [44] in a descending and ascending
orders, respectively.

In this strategy, the randomly chosen samples ensure that
the samples that are not in the ranking list can be selected
in some iteration. Actually, the positive samples are quickly
appended to the list whereas the negative ones are slowly
appended, because the number of negatives is much higher
than the positives.

To save memory, we limit the length of the negative ranking
list. After the Bitonic sorting, the samples that exceed the
length limit are deleted from the list. Therefore, some samples
in the ranking list may be replaced by the harder samples in
an iteration.

V. EXPERIMENTS

A. Data Sets

In this section, we evaluate the proposed method on three
different data sets. Table II shows the camera, identity (ID),
and image numbers.

Market-1501 [45] contains 32 688 bounding boxes of 1501
identities (IDs) produced by the deformable part model
(DPM). Each person is captured by 2–6 nonoverlap cameras.
This data set contains 2798 distractors (produced by DPM
false detection) and 3819 junk images (has zero influence on
the ReID accuracy) in the test set.

CUHK03 [20] is one of the largest person ReID data sets,
and it has 1467 IDs from five different pairs of cameras on
campus. The detected and manual labeled bounding boxes are
all used for training in our experiments and have an average
of 4.8 detected and manual labeled bounding boxes in each
view.

Duke [46] is a subset of the DukeMTMC [47] for image-
based ReID. The original data set contains 85-min high-
resolution videos from eight different cameras. There are 1404
IDs appearing in more than two cameras and 408 IDs that
appear in only one camera. In the training set, 702 IDs are
randomly selected, and the remaining 702 IDs are used as the
testing set. In the testing set, one query image for each ID in
each camera is picked in the probe and the remaining images
are set in the gallery. As a result, the data set contains 16 522
training images of 702 IDs, 2228 query images of the other
702 IDs, and 17 661 gallery images.

B. Settings and Evaluation Protocols

We employ the popular networks, ResNet50 [43] and
GoogLeNetv3 [42] as the baselines, which are called Res
and Inc (Inception) for short, respectively. The architecture
of our network is introduced in Section IV-A. The models are
implemented on CAFFE [48]. We train the networks 120 000
iterations on each data set.

We use a three-symbol sequence to denote the settings of
the experiment. The first symbol shows the sample mining
range, which is shown as follows.

1) L: Local mining in a mini-batch.
2) G: Global mining in the ranking list.
The second and third symbols indicate the positive and neg-

ative sample mining modes, respectively, which are shown as
follows.

1) R: Randomly choose samples.
2) S: Choose the semihard samples.
3) H: Choose the top hardest samples.
For example, LRS means that it randomly chooses the pos-

itive samples and then chooses the corresponding semihard
negative samples in a mini-batch. If all positive samples are
reserved in a mini-batch, the LRS is equivalent to the method
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TABLE II
DATA SET GROUPING FOR TRAINING, VALIDATION, AND TESTING

(a) (b)

Fig. 4. Compare with the Inception-v3 baseline on the Market-1501 data set. (a) mAP. (b) SQ.

in [28]. Another example is GHS, which involves the global
mining of the top hardest positive samples and semihard neg-
ative samples in the ranking list. A special example is *RR,
which randomly chooses the positive and negative samples.
The first symbol is “*,” which indicates that random selection
is no different from local mining in a mini-batch and global
mining in the ranking list.

In the experiments, we employ the commonly used single
query (SQ) accuracy, and the mean average precision (mAP)
to evaluate the methods. In the experimental data sets, each
ID has multiple instances. For SQ, only the first match is
counted regardless of how many ground-truth matches are in
the gallery [29], [45], [49]–[51] (from the query viewpoint,
we do not know two images belong to one person). The mAP
is the mean of the average precision (AP), which provides a
more comprehensive evaluation when multiple gallery ground
truths exist, because it considers both the precision and recall
of an algorithm [45]. The SQ and mAP are all appropriate to
evaluate performance in the data sets with several images for
each ID.

C. Compare With the Baseline

Figs. 4 and 5 compare the results of different sample mining
ranges and modes (detailed in Section V-B) for Inception-v3
and ResNet50, respectively. When the dimension is n = 1,
the multiplet is equivalent to the triplet. The accuracies of the
triplet and the best multiplet are shown in Tables III and IV.

Triplet of Inception-v3:

TABLE III
COMPARE WITH THE INCEPTION-V3 BASELINE(%)

TABLE IV
COMPARE WITH THE RESNET50 BASELINE(%)

1) The *RR method underperforms the sample mining
methods except GHS.

2) The LRH method outperforms all the other methods.
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(a) (b)

Fig. 5. Compare with the ResNet50 baseline on the Market-1501 data set. (a) mAP. (b) SQ.

TABLE V
COMPARE WITH THE STATE OF THE ART

3) Most local mining methods outperform global mining
methods.

Triplet of ResNet50:
1) The *RR method underperforms the sample mining

methods except GRH and GHS.
2) The LHH method outperforms all the other methods.
3) All local mining methods outperform global mining

methods.
Triplet Summary:
1) The random selection method underperforms most of

the sample mining methods, which means that sample
mining is effective for the triplet.

2) These results show that mining the hardest negative
samples is the most effective method in the ReID
problem, and not the semihard negative samples in face
recognition [28].

3) For the triplet, the local mining method outperforms
global mining methods.

Multiplet of Inception-v3:
1) The *RR method underperforms the sample mining

methods except GHS.

2) The GHH method outperforms all the other methods.
Multiplet of ResNet50:
1) The *RR method underperforms the sample mining

methods except GRH.
2) The GHH method outperforms all the other

methods.
Multiplet Summary: For the multiplet, the performance of

the global hard sample mining exceeds that of the local
mining method since the multiplet loss considers the objec-
tive global importance of samples. The harder the sample is,
the bigger the effect will be. The multiplet loss and global
hard sample mining work together to improve performance
further.

Time Consumption: The local mining time consumptions
of ResNet50 and GoogLeNetv3 are 14 and 18 h (120 000
iterations), respectively, whereas the global mining consump-
tions are 14.4 and 18.4 h, respectively. The global mining
of ResNet50 and GoogLeNetv3 expend 2.9% and 2.2% more
than the local mining, respectively. The time consumption
difference between the global mining and the local mining
is little.
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D. Compare With the State of the Art

We compare the results of the proposed sample min-
ing approaches against 13 other state-of-the-art methods on
Market-1501, CUHK03, and Duke data sets using the SQ top
1, 5, and 10 ranks, and the mAP evaluation, which is shown in
Table V. All the compared results come from their published
papers.

It is evident that our method outperforms all of the com-
pared state-of-the-art methods on Market-1501 and Duke,
which further proved the effectiveness of our proposed
method. The Spindle [55] method achieves better performance
than ours at rank-5 and rank-10 on the CUHK03 data set, but
it combines all current data sets together as its training data,
which is much larger than ours. Even so, our rank-1 (the most
important measurement) performance with respect to the SQ
and mAP on CUHK03 is higher than the Spindle method.

VI. CONCLUSION

This article focused on the hard sample mining and designs
a listwise ranking network, named LoopNet. The article pro-
poses a positive and a negative list to mine the hardest or
semihard samples globally, which is better than the local min-
ing methods in a randomly constructed mini-batch. It also
presents a multiplet loss that can be used to initialize the
ranking list progressively, which allows it to avoid calculating
the distances between every probe and every gallery samples
before training. The multiplet loss also considers the priority
of samples for each image, which makes the harder sample
more effective.

From this article, we can also draw some useful conclusions
for the ReID problem: 1) hard sample mining is effective for
promoting the ReID performance; 2) when the triplet loss is
used, local sample mining in a mini-batch can get the best
performance; and 3) if we consider the priority and effective-
ness of samples, the multiplet can further improve the ReID
performance. In addition, the global hardest sample mining
outperforms all other global sample mining methods and local
mining methods.

This is a study on ReID, a popular ranking problem. One of
the remaining questions is whether these conclusions can be
generalized to other problems, e.g., classification, detection,
and generation. Since the applications vary wildly, it becomes
an interesting topic to ask whether the hard samples subject to
the same distribution or whether the results of the hard mining
methods can still keep consistent, which deserves further and
comprehensive study.
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