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Abstract—To realize simulation experiments in large-scale In-
ternet of Things (IoT) networks, this work studies the utilization
of deep graph generative models to generate IoT networks, which
can provide an economic approach facilitating IoT to meet the
requirements of real-time performance, interoperability, energy
efficiency, and coexistence. In IoT, nodes have different attributes,
different connection ways with surrounding nodes, and different
compactness of the region, which pose great challenges for
network generation. By leveraging the properties of k-core and
variational autoencoder during network generation, we propose
a variable graph autoencoder called Core-GAE incorporating
coreness of nodes. In contrast to previous graph generative
models, Core-GAE can preserve the local proximity similarity
and maintain the global structural features simultaneously when
learning the structural features of graphs. All three of the tasks
we experimented with on four datasets show that Core-GAE
exhibits better performance than previous ones.

Index Terms—Iot Network, Deep Generative Model, Graph
Autoencoder, Core Decomposition.

I. INTRODUCTION

The Internet of Things (IoT), as a basic pillar of digital
manufacturing, achieves the ubiquitous connection between
objects and devices through various possible network access,
and intelligently senses, identifies and manages objects [1].
Productivity and efficiency can be significantly improved
through IoT for many important applications, such as public
utility companies [2], agricultural producers [3] and healthcare
providers [4]. Internet of Things is composed by ubiquitous
devices. The purpose of the IoT is to make the environment
and the IoT converge by perceiving the surrounding environ-
ment, transmitting and processing the acquired data, and then
feeding it back into the environment. More and more devices
are accessing the IoT networks. It is estimated that 28 billion
devices will be connected to the IoT networks in 2021 [5].
As a result, the volume of IoT devices can provide analytical
solutions and lead to better production practices.

Enormous IoT networks are emerging with the IoT devel-
opment, which simultaneously brings some challenges [6],
[7], such as the requirements for energy-efficient operation of
the network, the coexistence of diverse devices and the need
for real-time data feedback. In order to deal with all kinds
of problems that may appear in large-scale IoT networks, it
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Fig. 1. An example of IoT network generation.

should first carry out verification experiments in a simulated
environment. In other words, through the generative model, a
large-scale IoT network is generated, and specific simulation
experiments can be completed. By generating IoT networks,
we can predict the emergency situation and avoid unnecessary
losses. Fig. 1 shows an example of IoT network generation.

IoT networks can be abstracted as graphs, where the devices
in the network can be regarded as the nodes, and the commu-
nication between devices can be regarded as the edges or links
in the graph. Therefore, to generate a large-scale IoT network,
we only need to abstract the devices and connections in the
network as elements in the graph, and design a learning model
to learn the feature of the network, including the topology
structural information, features of nodes and connections.
Then, through the learned model, a larger graph (ie, a larger
IoT network) can be generated and has similar attributes and
structures to the previously learned network.

Benefiting from rapid development of deep learning, the
deep generation models have achieved great success in the
areas of image [8], speech [9] and natural language [10].
Currently, the main applications are word prediction [11],
time series generation [12], music improvisation [13], image
generation [14] and video synthesis [15]. Therefore, a natural
question is whether deep generative models can be utilized
in generating graph structures. However, this task faces great
challenges. On the one hand, the connection of the nodes in
graphs is arbitrary, and there is no clear way to construct the
graph in a linear manner according to a series of steps [16].
On the other hand, the learning process of graph representa-
tion is challenging. In the training process without stepwise
supervision, the iterative construction process of the discrete
structure of the graph involves discrete decisions, which are
not differentiable, so it is a problem for the training process
of backpropagation [17].

Despite of the great difficulities due to the discrete structure
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of graph, the development of Graph Convolution Networks
(GCN) [18] shed some light on deep graph generation. There
have been some results on deep graph generation [19]–[24]
presented based on GCN. But there are not existing results on
IoT network generation, becauese of the special features of
IoT, e.g., nodes with different attributes, different connection
types with surrounding nodes, and different compactness of
the region [25].

To address the aforementioned issues, we study the graph
autoencoder model for IoT generation, considering the com-
plex graphs abstracted from IoT. We propose a k-core [26]
based deep graph generator, called Core-GAE, to learn graph
data distribution. In contrast to the previous graph generative
models, Core-GAE can preserve the local proximity similarity
and maintain the global structural features simultaneously.
Core-GAE is decomposed into two components, encoder
and decoder. The encoder is responsible for representing the
original graph structure as low dimensional vectors, and the
decoder is responsible for reconstructing the graph with low
dimensional vectors. This decoupling operation makes the
model more flexible and enables it to learn structural features
of graphs. Fig. 2 illustrates the framework of Core-GAE.
Experimental results on real-world graphs show that Core-
GAE preforms better on many tasks than previous methods.

The rest of our paper consists of the following sections.
Section II briefly reviews existing graph generative methods
including probabilistic graph models, sequential models and
global models. Section III summarizes notations and defini-
tions used in this paper and formulates the problem of deep
graph generation. Section IV introduces our coreness based
graph autoencoder model. The experiment results and analysis
are illustrated in Section V. The conclusion and future work
are given in Section VI.

II. RELATED WORK

In this section, we discuss the existing works on graph
generation.

The earliest random graph model of graph generation was
developed by Erdős & Rényi [27]. The Erdős & Rényi
model assumed an independent identical probability for each
possible edge, which leads to rich mathematical theory on
random graphs. But this model is too simplistic to model
more complex graphs, and the independent and identically
distributed assumption violates real-world graphs.

Barabási & Albert [28] involved preferential attachment
to generate graphs. It is assumed that the more neighbors
a node has, the more likely it will be linked to new nodes
added to the graph. Such models typically capture only one
attribute of the graph and are not flexible enough to model
a wide range of graphs. Some small-world models such as
Watts & Strogatz [29] aim to capture the small diameter and
local clustering coefficient properties in graphs. 𝑝∗ model
[30] is an exponential random graph model which estimates
networks from the field of social analysis. However, 𝑝∗ model
often focuses on the local structural features of the graphs.
Leskovec et al. [31] proposed the Kronecker graph model
which is capable of modeling multiple properties of graphs, but

it still has limited capabilities for easy-to-handle mathematical
analysis.

In recent years, the deep graph generative model has
achieved great success in the field of graph representation
learning and graph generation. There are many applications
of deep graph generation, ranging from the discovery of new
molecular structure to the modeling of social networks and
other fields have achieved good results. Graph autoencoders
are deep neural architectures which learn graph representations
in a latent low-dimensional feature space. Deep graph genera-
tive models aim at learning the distribution representations of
graphs by encoding graphs into low-dimensional vectors and
decoding the learned embeddings to reconstruct new graphs.
Most graph generative models focus on molecular graph
generation problems, which have many practical applications
in drug discovery [32]. The deep graph generative models is
mainly developed into two categories, which are sequential
methods and global methods.

Sequential methods [19], [20], [33]–[35] generates new
graphs by increasingly proposing nodes and edges step by
step. For example, when generating molecular graphs, deep
convolutional neural networks and recursive neural networks
are adopted as encoder and decoder respectively to simulate
the generation process of string representations for molecular
graphs. Although these methods are applied in specific areas,
they can also be applied to generation of general graphs.
Nodes and edges can be added iteratively to the increasing
graphs until specific conditions are met through these methods.
However, due to the existence of generation periods and the
idea of serializing graph information, the sequential methods
may lose the topological structural information of graphs.

Global methods [21], [23], [24], [36], [37] output a graph
all at once. VAE [36] is a latent variable-based model that
pairs a generator with an inference network. The precondition
of Graph Variational Autoencoder [21] is to set that the
generation of nodes and edges is independent and unrelated,
and its existence is treated as an independent random variable.
The model outputs the adjacency matrix, node attribute matrix,
and edge attribute matrix of the resulting graph. However, how
to effectively preserve the global structural information of the
reconstructed graph remains a challenge.

Regularized Graph Variational Autoencoder [22] further
improves Graph Variational Autoencoder by imposing validity
constraints to regularize the output distribution of the de-
coder. Some methods are inspired by Generative Adversarial
Networks [38], [39], and generative adversarial models for
graph generation are proposed. Molecular Generative Adver-
sarial Network [23] combines convGNN [40], GAN [41] and
reinforcement learning, which consists of a generator and a
discriminator and is able to generate molecules graphs with
specific required attributes. NetGAN [24] combines LSTM
[42] and Wasserstein GAN [43] to generate graphs based on
random walks. NetGAN uses reliable random walk data to
train generator in LSTM network, and uses discriminator to
identify false random walk from actual random walk to con-
front generator. Although not specially trained, the model can
generate graphs and show network patterns without specifying
them explicitly in the model definitions.
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Fig. 2. Illustration of the core based variational graph autoencoder. We let the adjacency matrix, feature matrix, and core matrix be input of the encoder. The
graph encoder embeds the graph into continuous representation Z. Then the decoder output the reconstruct graph 𝐺̂. Reconstruction ability of the autoencoder
is expedited by approximating 𝐺 and 𝐺̂.

III. PRELIMINARIES

We consider an undirected and unweighted graph 𝐺 =

(V, E), where V is the set of nodes, E ⊆ V2 is the set
of edges, 𝑁 = |V|. The adjacency matrix of 𝐺 is A, with
elements

𝐴𝑖 𝑗 =

{
1 ,(𝑣𝑖 , 𝑣 𝑗 ) ∈ E,
0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

The degree matrix of 𝐺 is a diagonal matrix, denoted as D,
with elements

𝐷𝑖 𝑗 =


𝑁∑︁
𝑗=1

𝐴𝑖 𝑗 ,𝑖 = 𝑗 ,

0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

Definition 1 (k-core): Given a graph 𝐺, a 𝑘-core is a
maximal connected subgraph where the degree of each node
is not less than 𝑘 .
𝑘-core satisfies hierarchical property, a 𝑘-core must be

contained in a (𝑘 + 1)-core. The core number (coreness) of
a node 𝑣 is the 𝑘 value of the maximum 𝑘-core in which 𝑣 is
belonging, denoted as 𝑐𝑜𝑟𝑒(𝑣).

The matrix Z ∈ R𝑁×𝐹 summarizes the embeddings of
nodes, 𝐹 is the dimension of learning embedding, X is a given
feature matrix summarizing the node attributes.

The notations and descriptions are summarized in Table I.

TABLE I
THE SUMMARY OF NOTATIONS.

Notation Description
𝐺 an undirected, unweighted graph
V a set of nodes
E a set of edges
A the adjacency matrix of graph
D the degree matrix of graph
X the feature matrix of nodes
C the coreness matrix of nodes
Z the learning embedding matrix of nodes

Problem formulation. Given a graphs 𝐺, Deep Graph
Autoencoder aims to learn samples from the data distribution
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Fig. 3. An example of 𝑘-core.

by employing deep graph neural networks and generate new
graphs. Specifically, this can be done by either learning the
distribution of graph first and then sample from the estimated
distribution to generate a new graph.

IV. K-CORE BASED GRAPH AUTOENCODER

We propose the k-core based graph autoencoder in this
section. Firstly, we introduce our graph encoder and decoder,
then we propose the loss function and the learning procedure.
The encoder is defined by posterior 𝑞𝜙 (z|𝐺), and the decoder
is defined by a generative distribution 𝑝𝜃 (z|𝐺), where 𝜙 and
𝜃 are learned parameters.

A. Graph Encoder

Firstly, we introduce our graph encoder 𝑞(Z|X,A) based
on graph convolutional networks. The general graph convolu-
tional framework is divided into two components: node feature
transformation and neighboring feature aggregation, which is
defined as

Z = ℎ( 𝑓 (X), 𝑔(A)), (3)

where 𝑓 is the feature transformation function, 𝑔 is the
propagation rule, ℎ is the feature aggregation function, Z is the
learned embedding matrix. Through the input graph adjacency
matrix, node feature matrix, and the defined propagation rules,
the final output is the node representation matrix.

To preserve the abundant global structural information in
embedding matrix, we use the coreness of nodes as the
additional structural attribute feature. The coreness of a node
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can effectively reflect the importance of the node in the graph.
The coreness feature of each node can be represented by a
sequence of coreness of its neighbors. In the following, we
present the representation of coreness matrix. The coreness
of all nodes can be computed in 𝑂 ( |E |) time [26]. Let
C = {𝐶0, 𝐶1, · · · , 𝐶𝑘𝑚𝑎𝑥

} be the 𝑘-cores of graph 𝐺, where
𝑘𝑚𝑎𝑥 is the max 𝑘 value of 𝑘-core. The 𝑘-cores follows the
property,

𝐶𝑘𝑚𝑎𝑥
⊆ 𝐶𝑘𝑚𝑎𝑥−1 ⊆ · · · ⊆ 𝐶1 ⊆ 𝐶0 = 𝐺. (4)

An example of 𝑘-core is shown in Fig. 3. According to the
property, the 𝑘-core that an edge locates in is determined by
its endpoint with the smaller coreness. Thus, the elements in
coreness matrix C of 𝐺 is

𝐶𝑖 𝑗 =


min{𝑐𝑜𝑟𝑒(𝑣𝑖), 𝑐𝑜𝑟𝑒(𝑣 𝑗 )} ,(𝑣𝑖 , 𝑣 𝑗 ) ∈ E,
𝑐𝑜𝑟𝑒(𝑣𝑖) ,𝑖 = 𝑗 ,

0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

The relationship between each node’s coreness and its neigh-
bor’s coreness can be reflected in this matrix. This matrix
can also be regarded as the coreness of each edge, i.e., the
edge feature matrix defined by coreness. For each training
graph, we firstly compute the coreness matrix and prepare for
input. We adopt the coreness matrix as the additional input of
the graph convolutional network. Formally, our two layer core
based graph convolutional network (CGCN) is defined as

𝐶𝐺𝐶𝑁 (X,A) = Ã𝑅𝑒𝐿𝑈 (ÃCXW0)W1, (6)

where Ã = D̃− 1
2 (A + I)D̃− 1

2 is the symmetrically normalized
adjacency matrix, D̃ = D + I, I is unit diagonal matrix, W is
a learnable weight matrix in the graph convolutional network,
𝑅𝑒𝐿𝑈 (·) = 𝑚𝑎𝑥(0, ·) is a nonlinear activation function.

Our 𝑘-core based graph convolution network model en-
hances the ability of graph representation learning, not only
preserves the local proximity of nodes by graph convolutional
networks, but also captures the global structure feature by
learning the coreness distribution.

B. Graph Decoder

The existence of nodes and edges is modeled as Bernoulli
variables in probabilistic graph models, and attributes of nodes
are multinomial variables. The decoder is deterministic which
is used to predict the adjacency matrix of generated graph.
The architecture of the decoder is a multi-layer perceptron, in
which the sigmoid activation function is used to compute the
adjacency matrix of generated graph. The decoder is given by
an inner product between latent variables:

𝑝(A|Z) = Π𝑁
𝑖=1Π

𝑁
𝑗=1𝑝(𝐴𝑖 𝑗 |z𝑖 , z 𝑗 ), (7)

with
𝑝(𝐴𝑖 𝑗 = 1|z𝑖 , z 𝑗 ) = 𝜎(z>𝑖 , z 𝑗 ), (8)

where 𝜎(·) is the logistic sigmoid function.
The generated node attribute matrix is transferred to the

input graph, the cross-entropy is as follows:

log 𝑝(X|z) = 1
𝑛

∑︁
𝑖

log 𝑋𝑇
𝑖, · 𝑋̃𝑖, ·, (9)

where 𝑋̃ ′ = C𝑋̃ , the 𝑋̃ is the predicted adjacency node
attribute matrix.

C. Learning Process

We assume that the decoder outputs a graph 𝐺̂ which is the
reconstruct graph , Â and X̂ are the adjacency matrix and the
node attribute matrix of 𝐺̂.

The model is trained by minimizing the upper bound on
negative log-likelihood [44]. When the regularization is inde-
pendent of the input space, the reconstruction loss must be de-
signed specifically for each input modality. The reconstruction
loss describes the similarity between graph 𝐺̂ generated by
sampling and the input graph 𝐺. The cross-entropy is defined
as

L1 (𝜙, 𝜃;𝐺) = E𝑞𝜙 (z |𝐺) [− log 𝑝𝜃 (𝐺 |z)], (10)

where the reconstruction loss can be defined as

− log 𝑝(𝐺 |z) = −𝜆𝐴 log 𝑝(Â|z) − 𝜆𝑋 log 𝑝(X|z). (11)

The predicted adjacency matrix A′ = SA, and the predicted
node attribute matrix X̃′ = SX̃, where S is the absolute value
of core matrix difference, i.e. S = |C − Ĉ|. The maximum
likelihood estimates are as follows:

log 𝑝(X|z) = 1
𝑁

𝑁∑︁
1

log X>
𝑖, ·X̃

′
𝑖, ·, (12)

To regularize the code space, we use KL-divergence to
sample z directly from 𝑝(z) instead from 𝑞𝜙 (z|𝐺) later.

L2 (𝜙, 𝜃;𝐺) = 𝐾𝐿 (𝑞𝜙 (z|𝐺), 𝑝(z)), (13)

where 𝐾𝐿 (·, ·) is the Kullback-Leibler divergence function
[45] which measures the information loss between two dis-
tributions.

We preserve the structural similarity in graph embedding
by encoding the neighboring structure into embeddings, i.e.
the coreness matrix has been input into embedding. Based
on structural equivalence [46], we capture the equivalence
structural role between nodes with the same structure identity
but no common neighbors in the graph. The node similarity
matrix defined by coreness matrix and highly linked node pair
usually has a large structure similarity score. According to the
definition of 𝑘-core and its hierarchical property, we notice that
the corenesses of a node’s neighbors is highly correlated with
that of the node. Therefore, we keep the following structural
similarity,

L3 (𝜙, 𝜃;𝐺) = | |C − Ĉ| |2𝐹 (14)

where 𝐶 and 𝐶̂ are the coreness matrix of 𝐺 and 𝐺̂.
Integrating the three loss equations Eq. 10, Eq. 13, and

Eq. 14, the combined loss function is

L(𝜙, 𝜃;𝐺) = L1 + L2 + L3. (15)

In the training process of initial gradient descent, each node
aggregates the features (including node features and coreness
features) of its neighbors into embedding z, which will pre-
serve the local structural similarity. By iteratively optimizing
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the loss function, Z will recursively aggregate the global
structural features. After the above iterations, Z achieves the
fitting. The final embeddings Z obtained in this way can not
only preserve the local features of the graph structure, but also
capture the global structural information of the graph.

D. Summary

According to the graph encoder and graph decoder in
Section IV-A and Section IV-B, the objective function and
learning process in Section IV-C, Combining above together,
the learning graph representation Z is

Z = 𝐶𝐺𝐶𝑁 (X,A), (16)

where CGCN is the feature aggregation function mentioned in
Section IV-A. The adjacency matrix Â of reconstructed graph
is

Â = 𝜎(ZZ>). (17)

In the training procedure, we use 𝑠 to index a training
example, and 𝑠 to denote a synthetic example. Then an input
graph 𝐺 (𝑠) is encoded as 𝑍 (𝑆) , which in turn is decoded to
compute the loss L and reduce the loss in each optimization
step.

V. EXPERIMENTS

In this section, we evaluate our generative model Core-GAE
on three tasks: link prediction, graph generation, and node
classification. The experimental results and analysis of these
three tasks are as follows.

A. Datasets and Setup

The datasets in our experiments include citation networks
and bichemical graphs 12. Citation networks represent the
relationship between authors and their papers. It is usually
used to evaluate the node classification and link prediction
tasks of the model. Cora, Citeser and PubMed are citation
networks. Biochemical graphs show the relationship between
chemical molecules and compound atoms, and chemical bonds
are represented as edges. Biochemical graphs are usually used
to evaluate the performance of node classification. PPI is a
biochemical graph. Table II shows the statistics of the datasets
used in the experiments.

TABLE II
STATISTICS OF THE DATASETS.

Dataset #Nodes #Edges Features
Cora 2708 5429 1433

Citeseer 3327 4732 3703
Pubmed 19717 44338 500

PPI 56944 828716 198

We use the following graph generative models as the
experimental comparison of Core-GAE:

• SpectralClustering (SC) [47]: this clustering method cuts
the graph, makes the weight sum of edges between

1http://konect.cc/networks
2http://snap.stanford.edu/index.html

different subgraphs as low as possible, and makes the
weight sum of edges in subgraphs as high as possible.

• DeepWalk (DW) [48]: it uses random walk to generate
node sequence, and use word2vec [49] to learn node
representation.

• GAE [36]: It is a unsupervised learning on graph-
structured data based on VAE. This model uses a 2 layer
GCN as the encoder, and a simple inner product as the
decoder.

• VGAE: It uses a simple graph convolution network to en-
code the graph, and represent the decoded reconstructed
graph through the learned graph.

• NF-VGAE [50]: It strengthens the explicit density func-
tion and enriches the posterior distribution.

• SIG-VAE [51]: It uses hierarchical variational framework
to make neighbors share, and can better use graph struc-
ture modeling.

• GCN [52]: it uses a simple graph neural network model
to represent and learn graph structure.

• GAT [53]: It is a variant of GCN, which uses attention
mechanism to learn the feature of neighbors with different
weights.

• MolGAN [23]:It uses an implicit likelihood based node
ranking heuristic as graph learning representation.

Parameter Settings. For all the above methods based on
graph convolution networks, we set graph convolution network
as a two-layer graph convolution network. Adam optimizer
[54] is set as the optimization method, the learning rate is set to
0.001 and the weight decay is 5×10−4. For the feature matrix
of nodes, we use the one-hot representation. The dimension
of the output for embedding for all methods is 128.

B. Link Prediction

We compare our Core-GAE and other methods to measure
the performance of link prediction. The average accuracy (AP)
and the curve of area under receiver operating characteristic
curve (ROC) (AUC) are the metrics we evaluate in the
experiments. We use the 5% edges as the validation set and the
10% edges as the test set. The preprocessing of the datasets
is the same as [37], and each method runs 10 times on the
test set. For fair comparison, the number of parameters for all
methods is similar to the default VGAE.

Fig. 4 shows the results of AUC and AP on the task of
link prediction. It can be seen that Core-GAE outperforms
known baselines and other comparison methods almost in all
datasets. The AUC of our method was more than 95% on each
data set, especially on Pubmed, which reached 96.94%, much
better than the methods compared in the experiment. Similarly,
the AP of our method on each data set is also more than 95%,
especially in PPI, which reaches 97.45%. Experimental results
show that our algorithm performs well on the task of link
prediction compared with other methods.

The training curves of AUC and AP for the Core-GAE on
four datasets are shown in Fig. 5. In these figures, the 𝑥-axis
represents the number of training iterations, and the 𝑦-axis
represents AUC and AP respectively. It can be found that in
the first dozens of rounds of training, the error between each
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Fig. 4. The results of link prediction.
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Fig. 5. The training processing of our algorithm in link prediction.

experiment results of our algorithm is relatively large, and
the experimental structure gradually tended to be stable and
does not change any more after dozens of rounds. When the
number of iterations is enough, the structure of our algorithm
can be reflected, and it only needs dozens of rounds to reach
stability. For Citeseer, the performance of our algorithm is not
as good as the other three datasets in the first 40 rounds of
AUC results, but after 60 rounds, our algorithm performs very
well on all datasets and became stable. For the data set of PPI,
the performance of our algorithm is very unstable in the first
80 rounds in AP tests, but after 100 rounds, the performance
of our algorithm on all datasets becomes stable.

C. Graph Generation

To further prove the flexibility and efficiency of Core-GAE,
we use the learning representation embedding to construct new
graphs. We use two metrics, density and average clustering
coefficient, to measure the difference between the original
graph and the generated graph. The smaller the difference
is between the original graph and the generated graph, the
more able our method is to capture the structural properties
of graphs. For example, Core-GAE calculates the network
parameters of Cora, such as the density 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑜. Using the
autoencoder and learning decoder, a new graph is generated to
see if its density 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑛 is close to the original graph. The
percentage error of density is defined as |𝑑𝑒𝑛𝑠𝑖𝑡 𝑦𝑛−𝑑𝑒𝑛𝑠𝑖𝑡 𝑦𝑜 |

𝑑𝑒𝑛𝑠𝑖𝑡 𝑦𝑜
.

The results are illustrated in Fig. 6. Comparing the original
graph with the generated graph, the difference of density
between the original graph and the generated graph is small.
However, in the sparse graph, the average clustering coef-
ficients of the original graph and the generated graph are
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Fig. 6. The percentage of error in the task of graph generation.

quite different due to the unobvious structural feature of the
sparse graphs. On CiteSeer, our method performed well on
both metrics.

D. Node classification

We also applied Core-GAE for node classification task. The
results are shown in Fig. 7. By modifying the loss function,
including graph reconstruction, our model shows powerful
generalization, although it is not specially trained for this task.

The training curves illustrating accuracy of our Core-GAE
are shown in Fig. 8. From the result, we can see that our
model can achieve good performance within only dozens of
iterations on all datasets.

Summary. The experimental results show that our Core-
GAE model exhibits good stability and scalability. Compared
with the baseline models, our model has good performance in
various graph analytic tasks. In addition, our model is suitable
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for handling large graph, which is desirable in a real-world
implementation.

VI. CONCLUSION

Considering the rapid development of the Internet of Things
and the simulation experiment demands on large-scale gen-
erated IoT networks, we propose a coreness based graph
autoencoder for IoT network generation. In contrast to pre-
vious graph generative models, our proposed Core-GAE can
preserve the local proximity similarity and maintain the global
structural features. Experimental results illustrate that our
approach exhibits much better performance than state-of-the-
art methods. Some issues of generating IoT networks still need
well studies. In the real world, the networks are evolving
and change all the time. Modeling and understanding the
generation of dynamic graphs have not been well explored.
Furthermore, scalability has been a challenge to the graph
generative model. Large networks require large computation
and storage to have sufficient information flow. This would
limit the scalability of these models. Therefore, we hope
that Core-GAE can provide some enlightenment on further
research to obtain more advanced generative models.

REFERENCES

[1] Z. Cai and X. Zheng, “A private and efficient mechanism for data
uploading in smart cyber-physical systems,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 2, pp. 766–775, 2020.

[2] A. I. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Commun. Surv. Tutorials, vol. 17,
no. 4, pp. 2347–2376, 2015.

[3] N. D. Mueller, J. S. Gerber, M. Johnston, D. K. Ray, N. Ramankutty,
and J. A. Foley, “Correction: Corrigendum: Closing yield gaps through
nutrient and water management,” Nature, vol. 490, no. 7419, pp. 254–
257, 2012.

[4] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless
sensor networks: A top-down survey,” Comput. Networks, vol. 67, pp.
104–122, 2014.

[5] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Trans. Ind. Informatics, vol. 14, no. 11, pp. 4724–4734, 2018.

[6] Z. Cai and Z. He, “Trading private range counting over big iot data,” in
ICDCS. IEEE, 2019, pp. 144–153.

[7] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards multiple
parties in industrial iots,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 968–979, 2020.

[8] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
ICLR, 2016.

[9] X. Yan, J. Yang, K. Sohn, and H. Lee, “Attribute2image: Conditional
image generation from visual attributes,” in 14th European Conference
of Computer Vision, vol. 9908, 2016, pp. 776–791.

[10] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin,
“Adversarial feature matching for text generation,” in ICML, vol. 70,
2017, pp. 4006–4015.

[11] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz,
and S. Bengio, “Generating sentences from a continuous space,” in
Proceedings of the 20th SIGNLL Conference on Computational Natural
Language Learning. ACL, 2016, pp. 10–21.

[12] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” in ISCA Speech Synthesis
Workshop. ISCA, 2016, p. 125.

[13] N. Jaques, S. Gu, R. E. Turner, and D. Eck, “Tuning recurrent neural
networks with reinforcement learning,” in ICLR. OpenReview.net, 2017.

[14] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
ICLR, 2016.

[15] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with
scene dynamics,” in Annual Conference on Neural Information Process-
ing Systems, 2016, pp. 613–621.

[16] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” in ICLR, 2016.

[17] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” J.
Symb. Comput., vol. 60, pp. 94–112, 2014.

[18] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning, ICML, vol. 70.
PMLR, 2017, pp. 1263–1272.

[19] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. W. Battaglia, “Learning
deep generative models of graphs,” in ICML, 2018.

[20] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn:
A deep generative model for graphs,” in ICML, 2018.

[21] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” in International Confer-
ence on Artificial Neural Networks, vol. 11139. Springer, 2018, pp.
412–422.

[22] T. Ma, J. Chen, and C. Xiao, “Constrained generation of semantically
valid graphs via regularizing variational autoencoders,” in Annual Con-
ference on Neural Information Processing Systems, 2018, pp. 7113–
7124.

[23] N. D. Cao and T. Kipf, “Molgan: An implicit generative model for small
molecular graphs,” in ICML workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018.

[24] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan:
Generating graphs via random walks,” in ICML, vol. 80, 2018, pp. 609–
618.

[25] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: Anomaly detection
in dynamic graph using attention-based temporal GCN,” in International
Joint Conference on Artificial Intelligence, 2019, pp. 4419–4425.

[26] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decompo-
sition of networks,” CoRR, vol. cs.DS/0310049, 2003.

[27] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci., vol. 5, no. 1, pp. 17–60, 1960.

[28] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[29] D. J. Watts and S. H. Strogatz, “Collectivedynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[30] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction
to exponential random graph (p*) models for social networks,” Soc.
Networks, vol. 29, no. 2, pp. 173–191, 2007.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 31,2021 at 05:40:57 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3085882, IEEE Internet of
Things Journal

8

[31] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling net-
works,” J. Mach. Learn. Res., vol. 11, pp. 985–1042, 2010.

[32] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Networks Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021.

[33] R. Gómez-Bombarelli, D. Duvenaud, J. M. Hernandez-Lobato,
J. Aguilera-Iparraguirre, and A. Aspuru-Guzik, “Automatic chemical
design using a data-driven continuous representation of molecules,” ACS
Central Science, vol. 4, no. 2, 2016.

[34] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar
variational autoencoder,” in ICML, vol. 70, 2017, pp. 1945–1954.

[35] C. Yan, S. Wang, J. Yang, T. Xu, and J. Huang, “Re-balancing variational
autoencoder loss for molecule sequence generation,” in 11th ACM
International Conference on Bioinformatics, Computational Biology and
Health Informatics, 2020, pp. 54:1–54:7.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
ICLR, 2014.

[37] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” CoRR,
vol. abs/1611.07308, 2016.

[38] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Annual Conference on Neural Information Processing Systems, 2014,
pp. 2672–2680.

[39] Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Generative
adversarial networks: A survey towards private and secure applications,”
ACM Computing Surveys, 2021.

[40] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in 15th International Conference on The Semantic Web, vol.
10843, 2018, pp. 593–607.

[41] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Annual Conference on
Neural Information Processing Systems, 2017, pp. 5767–5777.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[43] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” CoRR,
vol. abs/1701.07875, 2017.

[44] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, 2014.

[45] S. K. A. Leibler, “On information and sufficiency,” Annals of Mathe-
matical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[46] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network
embedding with regular equivalence,” in International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2357–2366.

[47] S. White and P. Smyth, “A spectral clustering approach to finding
communities in graph,” in Proceedings of the 2005 SIAM International
Conference on Data Mining, 2005.

[48] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in International Conference on Knowledge
Discovery and Data Mining. ACM, 2014, pp. 701–710.

[49] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in 27th Annual Conference on Neural Information Processing
Systems, 2013, pp. 3111–3119.

[50] G. Papamakarios, I. Murray, and T. Pavlakou, “Masked autoregressive
flow for density estimation,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 2338–2347.

[51] A. Hasanzadeh, E. Hajiramezanali, K. R. Narayanan, N. Duffield,
M. Zhou, and X. Qian, “Semi-implicit graph variational auto-encoders,”
in Advances in Neural Information Processing Systems, 2019, pp.
10 711–10 722.

[52] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs
1609.02907, 2016.

[53] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” CoRR, vol. abs/1710.10903,
2017.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

Qi Luo received his B.S. degree in 2015 from com-
puter science, Northeastern University at Qinhuang-
dao, China, and M.S. degrees in 2018 from Shan-
dong University, China. Currently, He is pursuing the
Ph.D. degree with the School of Computer Science
and Technology, Shandong University. His research
interests include graph mining and analytics.

Dongxiao Yu received his BS degree in 2006 from
the School of Mathematics, Shandong University
and the PhD degree in 2014 from the Department of
Computer Science, The University of Hong Kong.
He became an Associate Professor in the School
of Computer Science and Technology, Huazhong
University of Science and Technology, in 2016.
Currently he a professor in the School of Computer
Science and Technology, Shandong University. His
research interests include wireless networks, dis-
tributed computing, and graph algorithms.

Yanwei Zheng received the B.S. and M.S. degrees
from Shandong Jianzhu University and Shandong
University, Jinan, China, in 1999 and 2004, respec-
tively. He joined University of Jinan, Jinan, China,
and became a lector from 2004 to 2013. He received
his Ph.D. degree from School of Computer Sci-
ence and Engineering, Beihang University. He joined
Shandong University, Qingdao, China in 2019. His
research interests include machine learning and com-
puter vision, especially person re-identification.

Hao Sheng received his B.S. and Ph.D. degrees from
the School of Computer Science and Engineering of
Beihang University in 2003 and 2009, respectively.
Now he is a professor and PhD supervisor in the
School of Computer Science and Engineering, Bei-
hang University, China. He is working on computer
vision,pattern recognition and machine learning.

Xiuzhen Cheng received her M.S. and Ph.D. de-
grees in computer science from the University of
Minnesota Twin Cities in 2000 and 2002, respec-
tively. She is a professor in the School of Computer
Science and Technology, Shandong University. Her
current research interests include cyber physical
systems, wireless and mobile computing, sensor
networking, wireless and mobile security. She has
served on the editorial boards of several techni-
cal journals and the technical program committees
of various professional conferences/workshops. She

also has chaired several international conferences. She is Fellow of IEEE and
a member of ACM.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 31,2021 at 05:40:57 UTC from IEEE Xplore.  Restrictions apply. 


