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Abstract—Vertex engagement has extraordinary significance
for social resilience and network stability. There have been
lots of existing work studying this fundamental problem in
pairwise graphs, but in the more generalized hypergraphs, it
has not been well explored, due to the great challenges of
sparsity, complex connectivity and dynamicity of hypergraphs.
In this work, we initialize the study of the vertex engagement
problem in hypergraphs. Based on the observation that the
engagement of vertices in hypergraphs needs to consider two
critical parameters, group engagement and neighbor engagement,
we propose a vertex engagement model integrating the merits
of these two measures, called constrained core, to address the
ineffectiveness and incomprehensiveness caused by just using
a single engagement factor. By giving an algorithm for the
constrained core decomposition, we show that the constrained
core number of vertices can be computed in linear time. Fur-
thermore, by showing a localized property of contained core,
efficient maintenance algorithms for updating the constrained
core number of vertices in dynamic hypergraphs are proposed, to
avoid the large amount of redundant computations caused by the
decomposition from scratch. Extensive experiments conducted on
real-world hypergraphs well exhibit the effectiveness of our model
and the efficiency of the proposed algorithms.

Index Terms—Structural stability, vertex engagement, hyper-
graph

I. INTRODUCTION

The structural stability [1] of a network mirrors the ability

of the network to maintain sustainable services. The removal

of critical vertices may greatly destabilize the network [2]. For

example, in social networks, the decision by a user to stay or

leave in the network has a direct effect on his neighbors, as it

leads to the departure or retention of his neighbors, creating

a cascade reaction. Friendster was once a popular social

application with 115 million users, but it has collapsed due to

departure of critical users [3]. Therefore, how to measure and

discover the critical vertices is crucial to maintain the stability

of networks. Recent trends [4]–[6] have shown that vertex

engagement is a significant indicator measuring the importance

of vertices. It shows the vertex engagement can be captured

by the networked coordination games [7], where engagement

can be viewed as a network model based on direct-benefit

effects. The more neighbors a vertex has, the more benefits

the vertex will gain in the network [8], and the engagement

Yanwei Zheng is the corresponding author.
This work was supported in part by the National Key Research and

Development Program of China under Grant 2020YFB1005900, in part by
National Natural Science Foundation of China (NSFC) under Grant 62122042,
and in part by Shandong University multidisciplinary research and innovation
team of young scholars under Grant 2020QNQT017.

of a vertex can be expressed as it reaches a Nash Equilibrium

[4] by engaging with its neighbors.

Current studies on vertex engagement are all based on

pairwise graphs, where the edges in pairwise graphs represent

the relationship between two vertices. However, instead of

pairwise relationship, the polyadic relationships are ubiquitous

and widespread used in real-world scenarios. Many real-

world relationships occur simultaneously between more than

two entities [9]. For example, the publication of a paper

is a collaborative relationship among multiple authors, and

pairwise graphs cannot capture such higher-order collaboration

relationships completely, as pairwise graphs cannot distinguish

which paper is contributed from which authors in collaborating

when no other attributed information is available. Hypergraphs

[10] are a natural extension of graphs by allowing various sizes

of edges. Formally, a hypergraph consists of a set of vertices

and a set of hyperedges, where each hyperedge is a non-empty

subset containing an arbitrary number of vertices. Polyadic

relationships modeling by hypergraphs have been proven to

be fruitful and indeed inevitable for challenging tasks [11].

Studying the vertex engagement can resolve other funda-

mental problems in hypergraphs, such as mining dense sub-

hypergraphs [12] and constructing hierarchies of hypergraphs

[13]. The dense subgraph metrics in pairwise graphs are

significantly different in hypergraphs. For k-truss involves

exponential numbers of hyper-triangles [14], and k-core does

not reflect cohesiveness in sparse hypergraphs [15]. Depicting

the vertex engagement in hypergraphs facilitates us finding

suitable dense sub-hypergraph metrics. Further, constructing

hierarchies among dense sub-hypergraphs helps us understand

hypergraph structure and can be used for hypergraph visual-

ization.

Although the hypergraph precisely models the ubiquitous

polyadic relationship in real-world networks, the fundamental

vertex engagement has not been well explored in this general-

ized graph. The modeling approaches based on Nash Equilib-

rium between vertices and its neighbors lose the generality due

to the sparsity problems of hypergraphs. If the same groups of

vertices are represented by a hypergraph and a pairwise graph,

respectively, the number of hyperedges in the hypergraph

is usually much smaller than the number of edges in the

pairwise graph due to the polyadic relationship representation

by the hyperedges. If the engagement modeling methods used

in pairwise graphs are directly transferred to hypergraphs,

numerous vertices will express consistent engagements. This

results in the inability of modeling refined engagement, and
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Fig. 1. Examples of constrained core, each hypergraph is labeled with a pair of values (k, h) to represent the degree constraint k and neighbor constraint
h, respectively. In the first case, the degree constraint cannot distinguish the importance of vertices, while the neighbor constraint can distinguish the set of
vertices with different neighbor constraint well. In the second case, the neighbor constraint cannot distinguish the importance of vertices, while the degree
constraint can distinguish the set of vertices with different degree constraint well. Single usage of the number of neighbors or the degree may cause group
engagement or neighbor engagement to be invalid, the constrained core well combines both engagement measurements.

the solutions in pairwise graphs cannot be applied effectively

in hypergraphs anymore. Out of the above challenge, the study

of the vertex engagement in hypergraphs faces the following

two challenges.

• Challenge 1. The connections of vertices in hypergraphs

is much more complex than that in pairwise graphs.

In pairwise graphs, the number of edges connecting to

neighbors and the number of neighbors are the same,

while in hypergraphs they are two independent indicators.

Moreover, the hypergraph can express higher-order infor-

mation of vertex connection that is impossible expressed

by pairwise graphs. For example, the group characteristic

featured by vertices in the same hyperedge cannot be

accurately demonstrated in pairwise graphs. Hence, it is

hard to give a precise measure of the vertex engagement

in hypergraphs just using a single metric as in pairwise

graphs.

• Challenge 2. The dynamicity of hypergraphs are much

more complex than pairwise graphs. In pairwise graphs,

the insertion/deletion of one edge will directly in-

crease/decrease one neighbor of the two vertices incident

to the edge [16]–[18]. However, the insertion/deletion

of a hyperedge may change the neighbors of more than

two vertices by an uncertain value. For example, when

two vertices are neighbors in multiple hyperedges, these

two vertices may remain neighbors even after several

hyperedges are deleted. In contrast, two vertices in a

pairwise graph will no longer remain neighbors after the

edge between them is deleted. Therefore, the update of

the vertex engagement level in dynamic hypergraphs is

significantly more complicated.

To address the above challenges, we delve into the local

engaging properties of the vertices in hypergraphs. We ob-

serve that there is a difference between pairwise graphs and

hypergraphs regarding the definition of degree. The degree

of a vertex is equal to the number of neighbors of the

vertex in a pairwise graph, while in a hypergraph, this is not

always the case because hyperedges represent relationships of

multiple vertices, and the degree of a vertex does not equal

the number of neighbors. We also observe that the distribution

of the number of neighbors of vertices in hypergraphs and the

distribution of the degrees of the vertices have the same scale-

free nature, as shown in Fig. 3 in our experiment. Based on

the above observations, the engagement of vertices in hyper-

graphs needs to be performed from a more comprehensive

perspective. Both the number of neighbors of the vertex and

the number of hyperedges where the vertex is contained need

to be considered simultaneously for modeling engagement in

hypergraphs.

In particular, we consider two intuitive and important crite-

ria in real-world hypergraphs: group engagement and neighbor
engagement. The group engagement of a vertex is related

with the degree of the vertex, which is hyperedge-oriented

and exhibits potential on diversity of hyperedges, while the

neighbor engagement is related with the associated vertices,

which is vertex-oriented and neighbor-dependent. Because the

number of neighbors and the degree of a vertex illustrates

different characteristics in hypergraphs, they can model the en-

gagement in different perspectives. When a vertex is contained

in a few hyperedges but have many neighbors, the neighbor

engagement can highlight its connection to the associated

vertices, and when a vertex is contained in many hyperedges

but only have a few neighbors, the group engagement can

highlight its connection to the associated hyperedges.

To combine the superiority of group engagement and neigh-

bor engagement, we propose a novel model, constrained core,

which is defined as a maximal connected sub-hypergraph

in which each vertex is contained in at least k hyperedges

(group engagement) and has at least h neighbors (neighbor

engagement). Each vertex is labeled with a constrained core
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number (k, h), indicating the maximal constrained core that

the vertex can be in. The constrained core number can be

a prefect combination of group engagement and neighbor

engagement. Fig. 1 shows examples of constrained core, in

cases where either group engagement or neighbor engagement

alone would be ineffective, the constrained core always makes

use of the merits of both metrics. The difference between k-

core and constrained core is that k-core only considers group

engagement. The group engagement and neighbor engagement

in pairwise graphs are equivalent, thus constrained core has

only one valid parameter in pairwise graphs and it is equivalent

to k-core, while k-core in hypergraphs where only group

engagement works is inferior to the constrained core. In event

detection of social networks (vertices represent users and

hyperedges represent interaction events), a hot event can be

either a hyperedge containing many vertices or a hyperedge

containing vertices of high degree. The k-core can only

discover frequently interacting users, while the constrained

core can also reveal hot events followed by active groups

through the hyperedges. Searching for active groups and hot

events that satisfy the demand can be realized by scaling the

values of the degree constraint and the neighbor constraint.

As the neighbors of a vertex are determined by the hyper-

edges in which the vertex is contained, we set the prioritization

order relationship between group engagement and neighbor

engagement, and calculate the constrained core numbers of

vertices with group engagement as the high priority. Based on

the hierarchical structure of the constrained core, we propose

a peel-like algorithm for constrained core decomposition. The

algorithm computes the constrained core numbers of vertices

by peeling off the hyperedges layer by layer and updating

the degrees and neighbors of the vertices. Then, in dynamic

hypergraphs, we show that the constrained core satisfies a

localized property, which helps to bound the range of possible

changes of constrained core number when the hypergraph

changes. Therefore, instead of recalculating the constrained

core number for all vertices, only a small amount of updates

is needed for maintaining the constrained core number of

vertices. We summarize our contributions as follows:

• We are the first to study the problem of vertex engage-

ment in hypergraphs. A novel metric called constrained

core number is proposed, which combines the superiority

of group engagement and neighbor engagement to char-

acterize the importance of vertices in hypergraphs.

• Based on the partial order dependence of group engage-

ment and neighbor engagement, we propose a decompo-

sition algorithm which is able to compute the constrained

core number for each vertex in linear time.

• Based on the localized nature of constrained core, we

give maintenance algorithms to update the constrained

core number of vertices in dynamic hypergraphs. The

maintenance algorithms can quickly identify the vertices

that need to update their constrained core numbers, thus

avoiding the large amount of redundant computations

caused by the decomposition from scratch.

• Comprehensive experiments on 10 real-world hyper-

graphs are conducted to evaluate our models. We analyze

the advantages and generalizability of our proposed con-

strained core, which is not only effective for a single

engagement metric but also integrates the superiority

of both types of engagements. Our constrained core

maintenance algorithms are much more efficient than the

recomputation approach in dynamic hypergraphs, and its

computation time scales stably with the cardinality of the

dynamic hyperedge.

Roadmap. The remaining sections of this paper are outlined

as follows: Section II will provide a brief survey of research

with respect to engagement. Section III will present the

notations and descriptions in this paper. In Section IV, the

decomposition algorithm of constrained core will be proposed.

The theoretical basis and maintenance algorithms in dynamic

hypergraphs will be given in Section V. Experiments and

analysis of results on real-world hypergraphs will be reported

in Section VI. Section VII will conclude the whole paper.

II. RELATED WORK

Recent studies of engagement argue that the Nash Equilib-

rium of a vertex depends on the measure of core number [4],

[5], [8], which is the maximum k of k-core a vertex belongs

to, and k-core is a maximal-connected subgraph in which the

degree of each vertex is no less than k. k-core has been shown

to be a pivotal metric of engagement [2], [4]–[6], [19]–[22],

and k-core was first introduced by [23] and [24].

Malliaros et al. [25] used the degeneracy property of the

k-core to quantify the dynamics of participation in real social

networks. Bhawalkar et al. [5] considered vertices that are not

in the k-core in the problem of anchoring b vertices to increase

the size of the k-core. The problem of collapsed coreness

[26] aims to protect critical nodes from attacks, and anchored

coreness [27] aims to enhance key nodes for network stability.

Zhang et al. [22], [28] investigated the collapsed k-core

problem to find the key users of social network participation.

Recently, k-core has also been involved into hypergraphs,

which was firstly proposed in [29]. The core decomposition

in hypergraphs attracted a lot of research, including sequential

algorithms [30], parallel algorithms [31], [32], and distributed

algorithm [33]. There are also a few works on maintaining k-

core in dynamic hypergraphs, including both exact algorithms

[15] and approximate algorithms [34].

We can apply k-core to model the engagement of vertices

in hypergraphs, but k-core in hypergraphs suffers from the

problem of sparsity. As shown in our experiments (Fig. 7),

the maximum core number in many large-scale hypergraphs

is very small. Therefore, it is not appropriate to simply use

the k-core directly ported from paired graphs as a measure of

engagement, which would make it lose its functionality.

III. PRELIMINARIES

Considering an unweighted and undirected hypergraph G =
(V,E) on a finite set of vertices V , where E ⊂ 2V is a set

of hyperedges. Each hyperedge e ∈ E represents a set of
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|e| vertices that take interaction. We denote n = |V | as the

number of vertices, and m = |E| as the number of hyperedges.

We use DG(v) to denote the set of hyperedges containing

v ∈ V and |DG(v)| to denote the degree of v, i.e., the number

of hyperedges containing v. The neighbors of a vertex v ∈ V ,

denoted as NG(v), is the set of vertices that share the same

hyperedge with v. The cardinality of a hyperedge e, denoted

as |e|, is the number of vertices contained in this hyperedge.

Let cG denote the maximum cardinality of hyperedges in G,

i.e., cG = max{|e||e ∈ E}, and dG the maximum degree of

vertices is G, i.e., dG = max{|DG(v)||v ∈ V }.

Table I summarizes the notations and descriptions. The

subscript is omitted when the context is clear.

TABLE I
NOTATIONS

Notion Description

G=(V,E) an unweighted and undirected hypergraph
V (H) the vertices in sub-hypergraph H
E(H) the hyperedges in sub-hypergraph H
H(k,h) a constrained core restricted by (k, h)
DG(v) the set of hyperedges containing v in G
NG(v) the neighbors of v in G
cG the maximum cardinality of hyperedges in G
dG the maximum degree of vertices in G
rG the maximum number of neighbors vertices in G

CoCoreG(v) the constrained core number of v in G
CoCorekG(v) the degree constraint of v in G
CoCorehG(v) the neighbor constraint of v in G

Based on the above definitions, we present the definition of

constrained core.

Definition 1 (Constrained Core): Given a hypergraph G =
(V,E), a sub-hypergraph of G denoted by H(k,h), is a

constrained core with group engagement parameter k and

neighbor engagement parameter h, if it satisfies the following

conditions:

(1) for each vertex v ∈ H(k,h), DH(k,h)
(v) ≥ k;

(2) for each v ∈ H(k,h), |NH(k,h)
(v)| ≥ h;

(3) H(k,h) is a maximal connected sub-hypergraph.

As there are two parameters in the definition of constrained

core, there can be three different ways to define the constrained

core number of vertices, i.e., (i) first consider the group

engagement of a vertex and then determine the neighbor en-

gagement, (ii) first consider the neighbor engagement and then

determine the group engagement, and (iii) consider the group

engagement and the neighbor engagement simultaneously. We

here take the first approach. This is because the interactions

of vertices in hypergraphs are initiated by groups. It is the

connection of vertices via hyperedges that allows vertices to

be connected to their neighbors. In addition, it is feasible to

determine the neighbors of a vertex by its groups, but not vice

versa. The other approaches are left for future work.

Definition 2 (Constrained Core Number): Given a hyper-

graph G = (V,E), the constrained core number (kv, hv) of a

vertex v, denoted as CoCore(v), is defined as follows.

(1) kv is the maximum value of k such that v is contained

in a constrained core, denoted as CoCorek(v);
(2) hv is the maximum value of h such that v is in

a constrained core with group engagement parameter kv ,

denoted as CoCoreh(v).
The constrained core number of a hyperedge e, denoted

by CoCore(e) = (k, h), is the minimum constrained core

number of the vertices contained in this hyperedge. We call

k as the degree constraint and h as the neighbor constraint.

The constrained core number of a hyperedge can be computed

from the constrained core numbers of the vertices it contains.

Suppose CoCore(e) = (ke, he), then

ke = min{CoCorek(v)|v ∈ e},
he = min{CoCoreh(v)|v ∈ e,CoCore(v)k = ke}.

(1)

Problem Statement. In this paper, we study the compu-

tation of constrained core numbers of vertices in a given

hypergraph G. Specifically, we will focus on the following

three problems.

(1) Constrained Core Computation: Computing the con-

strained cores for given k and h values;

(2) Constrained Core Decomposition: Computing con-

strained core numbers for vertices in G;

(3) Constrained Core Maintenance: Updating the con-

strained core numbers of vertices in dynamic hypergraphs

avoiding fully recomputation.

IV. CONSTRAINED CORE COMPUTATION AND

DECOMPOSITION

In this section, we first propose the algorithm to compute

the constrained cores for given thresholds. Then we implement

an auxiliary index which records the number of neighbor

relationships of vertices and is able to update the neighbors in

a timely manner after the hypergraph changes. Based on this

index, we propose a constrained core decomposition algorithm

by peeling hyperedges.

A. Computation of Constrained Core

Algorithm 1 shows the process of computing constrained

cores. In the algorithm, the constrained cores are computed

by iteratively deleting the vertices whose degrees are less than

k or number of neighbors are less than h. The final remaining

sub-hypergraphs are constrained cores restricted by (k, h). To

update the set of neighbors of vertices in time, we add an

auxiliary data structure, called neiCount, to store the number

of occurrences of neighbors of each vertex.

Analysis. Each vertex in the sub-hypergraph H returned by

Algorithm 1 satisfies the degree constraint k and the neighbor

constraint h; otherwise, Algorithm 1 will proceed to delete the

vertices that violate the two constraints. Suppose H is not a

maximal constrained core, then there is a sub-hypergraph H ′

of H which is a larger constrained core. But it will meet the

condition in Line 3 to continue the deletion operation.

In Algorithm 1, the deletion of vertices and hyperedges

require O(n) and O(m) time, respectively. The update of

degree takes O(dGcG) time, and the neighbor update takes
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Algorithm 1 Constrained core computation

Input: G=(V,E), the degree constraint k, the neighbor constraint h
Output: constrained cores restricted by (k, h)

1: H ← G;
2: compute DH(v),neiCountv for v ∈ V ;
3: while ∃v ∈ V (H) such that |neiCountv| < h or |DH(v)| < k

do
4: V (H)← V (H) \ {v};
5: E(H)← E(H) \DH(v);
6: update DH(u),neiCountu for u ∈ NH(v) ;
7: return H = (V (H), E(H));

O(dGc
2
G) time where dG is the maximum degree and cG is

the maximum cardinality. Thus, the algorithm can be correctly

executed in O(ndGcG +mdGc
2
G).

B. Constrained Core Decomposition

Algorithm 2 shows the decomposition process of con-

strained core numbers. Because the degree constraint has

the high priority, the constrained core decomposition can

be computed on each level of degree constraint (Line 5).

Firstly, we select the vertices with the degree constraint k
which can be computed by the k-core decomposition [15].

Then the minimum number of neighbors hmin among all the

vertices in current k-core is computed (Line 7). We remove

all vertices whose neighbors are hmin from H (Lines 8-12).

The above iteration is executed until H is empty (Line 6).

Finally, we return the constrained core numbers of all vertices

and hyperedges (Line 14).

Algorithm 2 Constraint core decomposition

Input: G=(V,E)
Output: CoCore

1: CoCore← ∅;
2: initial Dv , neiCountv for v ∈ V ;
3: while G is not empty do
4: k ← 1;
5: H ← k-core of G; � k-core decomposition [15]
6: while H is not empty do
7: hmin ← min{|neiCountv| : v ∈ H};
8: while ∃v ∈ H such that |DH(v)| < k or |neiCountv| ≤

hmin do
9: CoCore(v) = (k, hmin);

10: for e ∈ DH(v) do
11: CoCore(e) = (k, hmin);
12: delete v and DH(v) from H;
13: k ← k + 1;
14: return CoCore;

Analysis. The algorithm computes the constrained core

numbers by first computing the degree constraint, and in

each iteration the degree constraint is computed from the k-

core. For a given k-core, the first neighbor constraint h1 in

Line 7 is the minimum number of neighbors of all vertices

in the k-core. After deleting the vertices with number of

neighbors not greater than h1, the second neighbor constraint

h2 is computed. Then the vertices just deleted are at most

in the constrained core H(k,h1). Recursively, we can get the

constrained core number for all vertices. For each k-core, we

perform an operation similar to Algorithm 1, then Algorithm 2

can be correctly executed in O(kmaxdGcG ·(n+mcG)), where

kmax is the maximum degree constraint.

V. CONSTRAINED CORE MAINTENANCE

In this section, we propose the constrained core maintenance

algorithms in dynamic hypergraphs where hyperedges are

inserted or deleted.
Different from the pairwise graphs where the insertion or

deletion of an edge can only make both the degree and the

neighbor constraints change with the same value at most one,

in hypergraphs, the insertion or deletion of a hyperedge can

cause the degree of each vertex in this hyperedge to change

by at most one, while the number of neighbors of each vertex

can be possible to change by more than one or even not to

change. Hence, it is much harder to identify the vertices whose

constrained core numbers need to update after the hypergraph

changes.
Subsequently, we first present some theoretical results that

can provide necessary conditions for the neighbor constraint

with which the vertices may update the constrained core

number after the hypergraph changes, such that the searching

range can be greatly reduced, to avoid redundant computations

caused by decomposition from scratch. The maintenance al-

gorithms for both the scenarios of hyperedge insertion and

deletion are then given based on these necessary conditions.

A. Theoretical Basis
At first, we introduce a localized property of constrained

core, which gives a localized manner for computing the

constrained core number, based on which we then show how

to search the vertices which may update the constrained core

numbers after inserting/deleting a hyperedge.
1) Localized Property: When updating the constrained core

number in dynamic hypergraphs, too many search operations

and global re-decomposition can both result in a lot of redun-

dant computation. Therefore, we need to find an efficient way

to calculate the constraint core number based only on the local

information of the vertices to reduce unnecessary calculations.
We consider a vertex v. Assuming CoCore(v) = (k, h), and

v is contained in a constrained core H(k,h). The constrained

core number of each hyperedge and each vertex in H(k,h) is at

least (k, h) by the definition of constrained core. We observe

that at least k hyperedges contain v and the degree constraint

of each of those hyperedges is not less than k; v has at

least h neighbors and the neighbor constraint of each of those

neighbors is not less than h. We refer to the above properties

as the localized nature of the constrained core. Formally,

CoCorek(v) =max{k||{e|e ∈ D(v),

CoCorek(e) = k}| ≥ k}. (2)

CoCoreh(v) = max{h|
|{u|CoCoreh(u) ≥ CoCoreh(v)}| ≥ h,

u ∈ e \ {v}, e ∈ D(v),

CoCore(e) = CoCore(v)}.

(3)
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This localized property provides us an approach to update

the constrained core numbers in dynamic hypergraphs, by

estimating the change of the constrained core number of a

vertex based only on the change of the constrained core

numbers of its neighbors.
2) Insertion of A Hyperedge: We first consider the case

that a hyperedge e0 is inserted to a hypergraph G. At first,

we introduce a concept of Pre-CoCore Number on the newly

inserted hyperedge e0, which can be seen as the initial value

of the constrained core number of e0. More importantly, with

the involving of the pre-CoCore number, as shown later, the

constrained core number update principle for the inserted

hyperedge is the same as that for other hyperedges existing

in the hypergraph.
Definition 3 (Pre-CoCore Number): After inserting a hy-

peredge e0 into a hypergraph G, the pre-CoCore number of

e0, denoted by CoCore(e0) = (k0, h0), is defined as

k0 = min{CoCorek(v)|v ∈ e0} (4)

h0 = min{CoCoreh(v)|v ∈ e0,CoCorek(v) = k0} (5)

We observe that inserting e0 into a hypergraph, the degree

increment of the vertices in e0 is one. It is easy to conclude

that after e0 is inserted, the degree constraint value of each

vertex can change by at most one, and it is able to update this

indicator using a similar approach for maintaining the core

number in [15]. However, the insertion of e0 can make the

increment on the number of neighbors of the vertices in e0
be any value between [0, |e0| − 1]. This makes it very hard to

identify the vertices which will change the neighbor constraint

value and how many the change will be. Subsequently, we give

necessary conditions for identifying the neighbor constraint

values with which the vertices may change their constrained

core numbers. These conditions can help greatly reduce the

search space for finding potential vertices.
Notice that by the localized property of constrained core,

computing the neighbor constraint of a vertex need to check

all neighbors with the same degree constraint. Therefore, the

update of the neighbor constraint and the update of the degree

constraint are not completely independent. The update of the

neighbor constraint needs to consider the change of related

vertices’ degree constraint. So in the subsequent discussion,

we consider two cases depending on whether in the new

hypergraph obtained by inserting e0, the degree constraint

value of e0 is increased based on its pre-CoCore number.
Assume that CoCore(e0) = (k0, h0). The following concept

of Head Vertex Set will be used in the analysis, which defines

the key vertices that affect the constrained core number of a

hyperedge. Fig. 2 shows an example of the head vertex set.
Definition 4 (Head Vertex Set): For a hyperedge e, the Head

Vertex Set of e, denoted by HVS(e), is the set of vertices in e
such that each vertex v ∈ e satisfies CoCore(v) = CoCore(e).
Each vertex in HVS(e) is called a head vertex of e.

The update of degree constraint can be independent of the

update of neighbor constraint, but not vice versa. Therefore, in

the subsequent, we discuss the update of neighbor constraint

in different cases according to the update of degree constraint.

1 2 3

6

4 5

7 8

9

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Head vertex set

Fig. 2. Example of Head Vertex Set. The hyperedge e contains 9 vertices,
and the constrained core numbers corresponding to the vertices at each layer
are labeled on the right, where k1 < k2, h1 < h2 < h3, h4 < h5.

Insertion Case 1: The degree constraint value of e0 does
not change.

In this case, the insertion of e0 does not change the degree

constraint of any vertex, while the neighbor constraint values

of vertices may be changed. We further divide the discussion

into tow sub-cases depending on whether the insertion of e0
makes the set of neighbors of at least one vertex in HV S(e0)
keep unchanged.

Insertion Case 1.1: The neighbor set of at least one
vertex in HV S(e0) does not change. As shown below,

the constrained core numbers of vertices do not change after

inserting e0 in this sub-case.

Theorem 1: After a hyperedge e0 is inserted into a hyper-

graph G where CoCore(e0) = (k0, h0), let G+ = G∪{e0}. If

CoCorekG+
(e0) = k0 and there exists at least one vertex v in

HVS(e0) such that NG+
(v) = NG(v), then the constrained

core number of all vertices keeps unchanged, i.e., for any

vertex u ∈ G, CoCoreG+(u) = CoCoreG(u).

Proof: We consider vertices v1, v2 ∈ HVS(e0) and an

arbitrary vertex v3 ∈ e0 \HVS(e0). Assume that the neighbors

of v1 do not change and the number of v2’s neighbors

increase after the insertion of e0, i.e., NG+
(v1) = NG(v1)

and NG+
(v2) �= NG(v2). Assume CoCoreG(v2) = (k0, h0)

and CoCoreG+
(v2) = (k0, h0 + x) where x > 0. But by

Eqt. 3, CoCoreG+(v1) = CoCoreG(v1), which concludes

that CoCoreG+(e0) = (k0, h0) by Eqt. 1. This means the

constrained core number of v2 cannot change by Eqt. 1, which

is a contradiction.

Insertion Case 1.2: The neighbor sets of all vertices in
HV S(e0) change. In this case, the neighbor constraint values

of vertices may change due to two reasons: (i) the number

of neighbors of this vertex is increased; (ii) the neighbor

constraint values of this vertex’s neighbors are increased.

Theorem 2: After a hyperedge e0 is inserted into a hyper-

graph G where CoCore(e0) = (k0, h0), let G+ = G ∪ {e0}.

If CoCorekG+
(e0) = k0 and the neighbor sets of all vertices

in HSV (e0) are changed, then a vertex w may change its

constrained core number only if CoCorekG(w) = k0 and
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CoCorehG(w) ∈ [h0, hUB ], where

hUB =min{ĥvi
|vi ∈ HVS(e0),

ĥvi
= argmaxh|{u|NG+

(u) ≥ NG+
(vi)}| ≥ h,

u ∈ e \ {v}, e ∈ DG+
(v),

CoCorek(e) = k0}.

(6)

Proof: When the degree constraint of e0 does not in-

crease, the degree constraint of all vertices in G+ will keep

the same as proved in [15]. We next analyze the neighbor

constraint change in the following three cases.

Case 1: CoCorekG(w) = kw �= k0. For vertices with degree

constraint kw < k0, the number of neighbors with neighbor

constraint greater than their own neighbor constraint does not

increase; for vertices with degree constraint kw > k0, the

constrained core H(kw,·) does not change, and the neighbor

constraint of all vertices with degree constraint kw does not

change consequently.

Case 2: CoCoreG(w) = (k0, h1), where h1 < h0. Assume

we delete e0 from G+, since CoCorehG+
(e0) ≥ h0 > h1

and the deletion of e0 does not change the constrained core

numbers of vertices in the constrained core H(k0,h1), so there

must exist another H(k0,h′
1)

where h′
1 ≥ h1 containing w,

which contradicts the definition that the constrained core is

maximal.

Case 3: CoCoreG(w) = (k0, h2), where h2 > hUB . Assume

the neighbor constraint of w is increased to h′
2 > h2, then there

is a constrained core H(k0,h′
2)

containing w in G+, and each

neighbor of w has neighbor constraint at least h′
2. By Eqt. 6,

there are at most hUB neighbors of w each of which has

neighbor constraint at least hUB . However, hUB < h2 < h′
2,

which is a contradiction.

Insertion Case 2: The degree constraint value of e0 is
increased.

Theorem 3: After a hyperedge e0 is inserted into a hyper-

graph G where CoCore(e0) = (k0, h0), let G+ = G ∪ {e0}.

If CoCorekG+
(e0) = k0 + 1, a vertex w may change its

constrained core number only if CoCorekG(w) = k0 + 1 and

CoCorehG(w) ≤ hUB , where

hUB =min{ĥvi |vi ∈ e0,

ĥvi = argmaxh|{u|NG+(u) ≥ NG+(vi)}| ≥ h,

{u|u ∈ e \ {v}, e ∈ DG+(v),

CoCorekG(e) = k0 + 1}}.

(7)

Proof: We prove the theorem in the following three cases:

Case 1: CoCorekG(w) = kw < k0 + 1. The neighbors of

w are still neighbors when the degree constraint of these

neighbors increase. Thus, the neighbor constraint of w will

not change.

Case 2: CoCorekG(w) = kw > k0+1. The degree constraint

of e0 is k0+1, since e0 is not in the constrained core H(kw,·).
Thus, the constrained core numbers of vertices in H(kw,·)
remain the same as G.

Case 3: CoCoreG(w) = (k0+1, hw), if hw > hUB , assume

the neighbor constraint of w has decreased as h′
w < hw, then

there is a constrained core H(k0+1,h′
w) containing w in G+,

and each neighbor of w with neighbor constraint at least h′
w.

By Eqt. 6, there are at most hUB neighbors of w and each of

which has at least hUB neighbors. However, hUB < h2 < h′
2,

which is a contradiction.

3) Deletion of A Hyperedge: We also denote the hyperedge

deleted as e0. In the following, we assume that the degree

constraint update has been accomplished. The discussion is

divided into two cases similar to the insertion scenario.

Deletion Case 1: The degree constraint value of e0 does
not change.

Using a similar approach as in the proof of Theorem 2, we

can get the following result.

Theorem 4: After a hyperedge e0 is deleted from a hyper-

graph G where CoCore(e0) = (k0, h0), let G− = G \ {e0}.

If CoCorekG−(e0) = k0, then a vertex w may change its

constrained core number only if CoCorekG(w) = k0 and

CoCorehG(w) ∈ [hLB , h0], where

hLB =min{h̄vi
|vi ∈ HVS(e0),

h̄vi = argmaxh|{u|CoCoreh(u) ≥ h0}| ≥ h,

u ∈ e \ {v}, e ∈ DG−(v),

CoCore(e) = CoCore(e0)}.

(8)

Deletion Case 2: The degree constrained value of e0 is
increased.

Different from Deletion Case 1, the degree constraint values

of vertices may be decreased to from k0 to k0−1 in this case,

as shown in [15]. Hence, it needs to consider the neighbor

constraint values of vertices whose degree constraint value is

k0 and k0−1. Using a similar approach for proving Theorem 3,

we can get the following result.

Theorem 5: After a hyperedge e0 is deleted from a hyper-

graph G where CoCore(e0) = (k0, h0), let G− = G \ {e0}.

If CoCorekG−(e0) = k0 − 1, then a vertex w may change its

constraint core number only if CoCorekG(w) ∈ [k0−1, k0] and

CoCorehG(w) ∈ [hLB , h0].

B. Maintenance Algorithms

In subsequence, we present the incremental and decremental

algorithms with respect to the insertion and deletion of a

hyperedge to maintain the constrained core number of ver-

tices, respectively. The insertion/deletion of a vertex can be

decomposed into the insertion/deletion of the set of hyperedges

containing that vertex, which is an opportunity to be discussed

in future work.

The two main challenges of designing maintenance algo-

rithms in hierarchical graphs are (1) bounding the change

hierarchies and (2) identifying the change vertices [16]–[18].

The previous maintenance algorithms [15], [35] only need to

identify one specific hierarchy of change and mainly focus

on searching the set of vertices to be updated in the specific

hierarchy. In contrast, our model is a finer-grained model, and

the change may occur on multiple hierarchies as shown before.

Consequently, it requires a large amount of computations on

bounding updated hierarchies, and hence a careful trade-off
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Algorithm 3 Incremental Algorithm

Input: G=(V,E), CoCoreG(v), e0
Output: CoCore for G ∪ {e0}

1: G+ ← G ∪ {e0};
2: (k0, h0)← CoCore(e0); � Eqt. 3
3: CoCoreG(e0)← (k0, h0);
4: CoCoreG+ ← CoCoreG;
5: update degree constraint in CoCoreG+ ;

6: if CoCorekG+(e0) = k0 then
7: if ∃v ∈ HVS(e0) such that NG+(v) = NG(v) then
8: return CoCoreG+ ; � Theorem 1
9: compute hUB by Eqt. 6;

10: update CoCoreG+ from (k0, h0) to (k0, hUB);
11: else
12: compute hUB by Eqt. 7;
13: update CoCoreG+ from (k0 + 1, h0) to (k0 + 1, hUB);
14: return CoCoreG+ ;

between re-decomposing update hierarchies and searching for

update vertices on the updated hierarchies is necessary. As

shown above, the computation of bounding the range of the

constrained core numbers with which the vertices may update

is very complicated. If we further distinguish the possible

change of each vertex’s constrained core number specifically, it

needs too many computations. So in our algorithm, we utilize a

more efficient approach which performs the re-decomposition

process directly to compute the constrained core numbers of

vertices whose constrained core numbers are in the computed

range. The experimental results in the next section illustrate

that our approach is effective on real-world hypergraphs.

Algorithm 3 shows the process of incremental constrained

core maintenance. We consider the scenario that a hyperedge

e0 is inserted into a hypergraph G, where the constrained core

numbers have been given by Algorithm 2. At the beginning

of the algorithm, the pre-CoCore(e0) is computed (Line 2).

Then the degree constraints are updated by the incremental

degree-based core maintenance algorithm in [15] (Line 5).

If the degree constraint of e0 has not increased, then we

determine if there is an update of the vertex’s neighbors. If

there is no update of the neighbors, then all the neighbor

constraints will not be updated (Line 7-8). If there is an update

of the neighbors, we compute the upper and lower bounds

of possible changes of neighbor constraint by Theorem 2,

and reformulate the neighbor constraint of the vertices using

the constrained core decomposition algorithm starting with

(k0, hLB) and ending with (k0, hUB) (Lines 9-10). If the

degree constraint of e0 has increased, then we preform this

recalculation process using the bounds in Theorem 3 (Lines

12-13).

Algorithm 4 shows the process of decremental constrained

core maintenance which is similar to Algorithm 3, thus the

description is omitted.

Running Example. If a hyperedge e in Fig. 2 is inserted,

we first calculate that k1 is increased or not. Then we compute

hUB by vertices 1, 2, and 3, and execute local decomposition

to update neighbor constraint in range [h1,hUB]. If e in

Fig. 2 is deleted, we first calculate k1 is decreased or not.

Algorithm 4 Decremental Algorithm

Input: G=(V,E), CoCoreG(v), e0
Output: CoCore for G \ {e0}

1: (k0, h0)← CoCoreG(e0);
2: G− ← G ∪ {e0};
3: CoCoreG− ← CoCoreG;
4: update degree constraint in CoCoreG− ;

5: if CoCorekG−(e0) = k0 then
6: if ∀v ∈ HVS(e0) such that NG−(v) = NG(v) then
7: return CoCoreG− ;
8: compute hLB by Eqt. 8;
9: update CoCoreG− from (k0, hLB) to (k0, h0);

10: else
11: compute hLB by Eqt. 8;
12: update CoCoreG− from (k0 − 1, hLB) to (k0 − 1, h0) and

from (k0, hLB) to (k0, h0);
13: return CoCoreG− ;

Then we compute hLB by vertices 1, 2, and3, and execute

local decomposition to update neighbor constraint in range

[hLB ,h1].

VI. EXPERIMENTS

In this section, we evaluate the effectiveness of the pro-

posed constrained core, the efficiency of our decomposition

algorithm, and the stability of the presented maintenance

algorithms.

A. Datasets and Setting

Datasets. We use 10 real-world hypergraphs1 and Table II

shows the statistics of these hypergraphs. CongressBill (CoBi)

is extracted from co-sponsors of legislative bills put forth

in both the House of Representatives and the Senate, in

which vertices are US Congresspersons and hyperedges are

comprised of the sponsor. Drug Abuse Warning (DrAb) is

the categories of patients’ drug combination. The hyperedges

of Mathoverflow-Answers (MaAn) are sets of questions an-

swered by users on Math Overflow. Microsoft Academic

Graph (MiAc) and Coauth-MAG-History (CoMH) are subsets

of the Microsoft Academic Graph where vertices are authors,

hyperedges correspond to publications from those authors.

Walmart-Trips (WaTr) is a hypergraph where the hyperedges

are sets of co-purchased products at Walmart. Threads-Ask-

Ubuntu (ThAU) is derived from threads on Ask Ubuntu

posts, Threads-Math-Sx (ThMS) is derived from threads on

math Stack Exchange posts. Trivago-Clicks (TrCl) is derived

from the ACM RecSys Challenge 20192, where vertices are

accommodations and hyperedges are sets of accommodations.

Coauth-DBLP (CoDB) is derived from the computer science

online bibliography DBLP.

Algorithms. We compare the constrained core number with

the degree-based core number and the neighbor-based core

number, which use only a single metric, degree or neighbor

1All the datasets can be downloaded in ARB [36].
2https://recsys.acm.org/recsys19/challenge/
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Fig. 3. Distribution of the degree and the number of neighbors of vertices.
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Fig. 4. Comparison of the three types of cores.

TABLE II
THE STATISTICS OF HYPERGRAPHS.

Name |V | |E| degmax cmax
¯deg c̄

CoBi 1718 105929 4620 25 465.27 7.55
DrAb 2109 87034 16090 22 162.53 3.94
MaAn 73851 5446 173 1784 1.78 24.19
MiAc 80198 51889 187 25 2.25 3.48
WaTr 88860 69906 5733 25 5.18 6.59
ThAU 90054 117764 2247 14 3.01 2.30
ThMS 153806 563710 12403 21 9.46 2.58
TrCl 172738 233202 339 85 4.21 3.12

CoMH 503868 308934 1077 925 1.78 2.90
CoDB 1836596 2955129 1399 280 5.22 3.24

number, to model engagement in hypergraphs. For the self-
completeness of this paper, we present the concept of degree-
based core to depict the group engagement, and the concept
of neighbor-based core to depict the neighbor engagement.

Definition 5 (Degree-based Core): A degree-based core
constrained by k is a maximal connected sub-hypergraph H =
(V ′, E′) of G = (V,E), such that ∀v ∈ V ′, |DH(v)| ≥ k.

Definition 6 (Neighbor-based Core): A neighbor-based core

constrained by h is a maximal connected sub-hypergraph H =
(V ′, E′) of G = (V,E), such that ∀v ∈ V ′, |NH(v)| ≥ h.

The degree-based core number of v in G, denoted as
DCore(v) = k, is the maximum value of k such that there
exists a degree-based core constrained by k containing v and
there is not any degree-based core constrained by (k + 1)
containing v. The neighbor-based core number of v in G,
denoted as NCore(v) = h, is the maximum value of h
such that there exists a neighbor-based core constrained by
h containing v and there is not any neighbor-based core
constrained by (h+ 1) containing v.

The algorithms used in the experiments are as follows:
• DegreeCore: the degree-based core decomposition algo-

rithm in [29].
• NeighborCore: the neighbor-based core decomposition

algorithm.
• CoCoreComp: the constrained core computation algo-

rithm (Algorithm 1).
• CoCoreDecomp: the constrained core decomposition

algorithm (Algorithm 2).
• CoCoreIncrement: the incremental constrained core al-

gorithm for hyperedge insertion (Algorithm 3).
• CoCoreDecrement: the decremental constrained core

algorithm for hyperedge deletion (Algorithm 4).
Settings. All algorithms are implemented in C++ and com-

piled by GNU GCC 9.3.0. All experiments are conducted on
a machine with an Intel Xeon Platinum 8276M 2.2GHz CPU
and 120GB memory in Ubuntu 20.04.2 LTS.

B. Results and Analysis

We first show the engagement metric distributions of the
datasets, and then evaluate the distribution of constrained core
number, the executed time of decomposition and maintenance
algorithms. Finally, we compare the constrained core with
degree-based core and neighbor-based core.

Experiment 1. Distribution of the degree and the number of
neighbors of vertices. Fig. 3 illustrates the distribution results
of each hypergraph. The distributions of these two indicators
exhibit very similar properties in most of the hypergraphs, and
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in several hypergraphs, it shows a power-law distribution for

both indicators. The distribution of the number of neighbors

of vertices in the same hypergraph is finer and tighter than

that of the degree of vertices.

Experiment 2. Comparison of three types of cores. To mea-

sure the cohesiveness of the three types of cores, we compare

the three types of cohesive subgraphs, the degree-based core

constrained by k = 10, neighbor-based core constrained by

h = 10, and constrained core (10, hmax) (where hmax is the

maximum neighbor constraint when k = 10). Fig. 4 reports the

density (the ratio of the number of hyperedges and the number

of vertices) and the average degree of the three types of cores.

The density and the average degree of the constrained core are

higher than the other two cores in all datasets, especially the

neighbor-based core. Table III presents the specific cases in

TrCl, in NeighborCore, a vertex has a large degree and many

neighbors, while the opposite is true for DegreeCore, where

both metrics are small for the constrained core. Therefore, the

constrained core exhibit the strongest cohesive nature.

TABLE III
CASE STUDY OF TRCL. m AND n ARE THE NUMBER OF HYPEREDGES AND

VERTICES OF CORES. deg AND nei ARE THE DEGREE AND NUMBER OF

NEIGHBORS OF THE VERTEX.

k=10 NeighborCore DegreeCore CoCore
h=10 or max. m=76315, n=38530 m=8182, n=662 m=7562, n=585

Vertex ID deg nei deg nei deg nei
89434 89 91 44 27 38 26

100856 73 81 21 10 20 8
137545 22 22 19 17 18 16
153278 98 49 85 26 84 25

Experiment 3. Distribution of core numbers of vertices.

Fig. 5 shows the distribution results of 4 representative hyper-

graphs. It can be seen that the range of values of the degree

constraint k of vertices is wider than that of the neighbor

constraint h in all hypergraphs. When the degree constraint

of vertices is small, the neighbor constraint can make a

more refined hierarchy of hypergraph. But when the degree

constraint of vertices is large, the effect of neighbor constraint

on the hierarchy of hypergraphs will be greatly weakened.

Fig. 6 shows the distributions of the degree-based core number

and the neighbor-based core number of vertices for the same

hypergraphs in Fig. 5. It can be seen that the distributions of

core numbers are highly correlated with the distributions of

the degree and the number of neighbors of vertices (Fig. 3).

Fig. 7 shows the maximum degree-based core number and the

maximum neighbor-based core number for each hypergraph.
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Fig. 9. Comparison of the update time of incremental and decremental constrained core maintenance.

In most hypergraphs, the maximum k and the maximum h
are similar. But in sparse hypergraphs with large cardinality

such as MaAn and MiAc, the maximum k is small, while

the maximum h still remains large. In such hypergraphs, the

neighbor-based core number and the constrained core number

remain valid, but the degree-based core number is invalid.

Experiment 4. Decomposition time of core numbers. Fig. 8

reports the time of decomposing the three types of cores in

all hypergraphs. It shows that NeighborCore is slower than

DegreeCore because the update of the degree is easier than

updating the number of neighbors of vertices. The deletion

of a hyperedge only makes the degree of each vertex in

this hyperedges decrease by one, but may incur an uncertain

change on the neighbors of a vertex, due to the fact that

these vertices may still be neighbors. In hypergraphs with

small cardinalities, the runtime of DegreeCore and Neihg-
borCore are quite close, because the hypergraphs with small

cardinalities are similar to the pairwise graphs where the

degree of a vertex approximates to the number of neighbors

of the vertex. CoCoreDecomp is the slowest one because

it is a hybrid algorithm of the two previous decomposition

algorithms. However, for most hypergraphs, the runtime for

CoCoreDecomp is much smaller than the sum of the running

time for NeihgborCore and DegreeCore.

Experiment 5. Maintenance time of constrained core num-
bers. We compare the running time of CoCoreIncrement
and CoCoreDecrement on all hypergraphs. We randomly

select 20 hyperedges for each hypergraph at each value of

cardinality from 2 to 25, and record the time to update the

constrained core numbers for the deletion and insertion of

these hyperedges. Fig. 9(a) reports the update time under

different cardinalities of hyperedges for each hypergraph in the

incremental and decremental cases, where the dashed lines are

the fitted curve of the average update time, and the colored

zones are the bounds of the update time. It shows that the

smaller the cardinality of the dynamic hyperedge, the shorter

the time needed to update the constrained core numbers of

vertices, for both the insertion or the deletion cases. When

the cardinality of the dynamic hypergraphs increase to a

large number, the runtime of CoCoreIncrement and CoCore-
Decrement increases very slowly, which demonstrates that

our algorithm achieves good stability in large-scale datasets.

For the same hypergraph, the runtime of CoCoreDecrement
is longer than that of CoCoreIncrement. This is because

CoCoreDecrement needs to update the neighbor constraints

of vertices with two different degree constraints. Fig. 9(b)
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reports the update time under different values of dynamic

hyperedges k and the setting is the same as Fig. 9(a). As the

core number of the dynamic hyperedge increases, the update

time becomes smaller. From these two experiments, we can

speculate that the update time of the maintenance algorithms

is positively related to the scale of the constrained core where

the dynamic hyperedge belongs.

Summarization. From the above experiments, it can be

concluded that both degree-based core number and neighbor-

based core number can reflect the importance of the vertices to

some extent in hypergraphs, but they may lose their usefulness

on specific categorizes of hypergraphs. The constrained core

number is a satisfactory balance between these two metrics,

such that it can perfectly reflect the refined engagement of the

hypergraph. In addition, the constrained core decomposition

algorithm exhibits good efficiency and the constrained core

maintenance algorithms exhibit good stability on real datasets.

VII. CONCLUSION

We initialized the study of the fundamental vertex engage-

ment problem in the general hypergraphs. The constrained core

was presented to model the vertex engagement by integrat-

ing the superiority of both group engagement and neighbor

engagement, and it was shown that the constrained core

decomposition can be completed in linear time. To avoid re-

dundant computations caused by the decomposition algorithm

when only a few vertices need to update their constrained

core numbers in dynamic hypergraphs, efficient maintenance

algorithms for both hyperedge insertion and deletion were also

given. Extensive experiments demonstrate that the proposed

model is effective, and our algorithms are efficient and stable.

Our work has shed some light on the modeling of ver-

tex engagement in the complex hypergraphs. In the future,

it deserves more efforts to investigating practical structural

properties of hypergraphs such that more precise metrics for

vertex engagement can be derived.
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