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Person reidentification (ReID) is a challenging computer vision task for identifying or verifying one or more persons when the
faces are not available. In ReID, the indistinguishable background usually affects the model’s perception of the foreground, which
reduces the performance of ReID. Generally, the background of the same camera is similar, whereas that of different cameras is
quite different. Based on this finding, we propose a template-aware transformer (TAT) method which can learn intersample
indistinguishable features by introducing a learnable template for the transformer structure to cut down the model’s attention to
regions of the image with low discrimination, including backgrounds and occlusions. In the multiheaded attention module of the
encoder, this template directs template-aware attention to indistinguishable features of the image and gradually increases the
attention to distinguishable features as the encoder block deepens. We also increase the number of templates using side in-
formation considering the characteristics of ReID tasks to adapt the model to backgrounds that vary significantly with different
camera IDs. Finally, we demonstrate the validity of our theories using various public data sets and achieve competitive results via a
quantitative evaluation.

1. Introduction

Face recognition (FR) is widely used to identify or verify one
or more persons in the scene using a stored database of faces.
However, the face is not available in the case of security
cameras, or the number of face pixels is very small, which
cannot be used for FR. Person reidentification (ReID)
recognizes pedestrians using apparent information across
camera views at different locations and times [1], which
avoids the requirement that the faces must be front and
close-up. ReID is regarded as a subproblem of image re-
trieval and is mainly used in the field of public security. ReID
faces a significant challenge due to changes in people’s poses,
camera viewpoint, occlusion, etc. Due to its wide application
and great academic challenges, ReID has become a hot
research field. With the development of the convolutional
neural network (CNN), ReID has made great progress in
recent years [2, 3].

Luo et al. [4] have revealed that the effective receptive
field of CNN is smaller than the theoretically expected
one, which indicates that it lacks the ability to capture

surrounding context information. Transformer [5],
however, does a better job, as it can establish long-range
dependencies using attention mechanisms. As a result, it
recently has been developed rapidly in computer vision.
Vision transformer (ViT) [6], which is the first pure
transformer network applied to image recognition, di-
vides the image into blocks and feeds them into the en-
coder to obtain the image feature representation.
TransReID [7] proposes the jigsaw patch module (JPM)
and embeds side information including camera and
viewpoint into the ReID task. It has also made significant
progress. By utilizing the attention information between
different image patches, the transformer has effectively
improved the global receptive field.

Nevertheless, there are still some issues unsolved with
the ReID task. (1) Transformer focuses on self-attention
within the sample, rather than mutual attention between
samples. Since ReID is a retrieval task, which is essentially a
task of comparing image similarity, the mutual attention for
intersamples can help make better discrimination for dif-
ferent persons. (2) Typically, a ReID task employs a small
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number of fixed cameras, resulting in similarities in the
background with poor discrimination [8], as Figure 1 shows.
Most existing methods pay too much attention to the rel-
evance between appearances of images [9], rather than to get
precise foreground features and omit background features
[10]. As a result, a few background patterns appear in large
numbers, which introduces noise into the model learning
process, lowering its accuracy. (3) Although side informa-
tion such as camera and viewpoint can enhance feature
robustness in ReID [11, 12], the CNN-based method of
fusing side information is still unsuitable for the trans-
former. To minimize the bias of side information variations,
it is necessary to redesign a specific module to construct an
invariant feature space [7].

To address the aforementioned issues, we propose a
template module for learning similar features (so-called
indistinguishable features) among samples and improving
the perception of distinguishable features. We integrate it
into the attention stage of the transformer and construct a
template-aware transformer (TAT). Specifically, we design a
learnable template that is in the same shape as the flattened
patches of the image after linear projection. We then con-
catenate the template with the input image embedding. After
the position embedding is added, we feed it into the
transformer encoder. In the attention stage, in addition to
computing self-attention, we also compute the attention
between the image patch and the template patch (i.e.,
template-aware attention). It assists in matching indistin-
guishable features of images, such as reducing the negative
consequence of background and occlusion. Since the
backgrounds from a certain camera are similar in style and
those from different cameras vary widely, we introduce the
camera as side information and assign different templates to
different cameras. -is template module used by TAT is
simple to set up and can be easily integrated into the
transformer and applied to other image retrieval tasks.

-e main contributions of this paper are summarized as
follows:

(1) We propose a learnable template module for learning
indistinguishable features among samples and im-
proving its interest on distinguishable features

(2) Aiming at the characteristics of ReID tasks, we in-
troduce camera ID as side information to better
expand the template and have effectively improved

the model in its ability to discriminate input samples
from different cameras

(3) Extensive experiments show this model outperforms
other state-of-the-art methods on Market-1501 [13],
DukeMTMC-reID [14], and Occlude-Duke [15].

-e remainder of this article is organized as follows:
section 2 discusses the related work about the proposal and
development of transformer and presents related work of
person reidentification. In Section 3, the template-aware
transformer is presented, including an agent (a learnable
template) and its expansion way. Section 4 introduces some
details of the implementation and provides the experimental
results. Section 5 concludes this article and outlines the
future work.

2. Related Work

-is work is closely related to visual transformer models and
ReIDmethods, especially those related to saliency, attention,
and alignment. In this section, we will briefly discuss these
efforts.

2.1. Person Reidentification. ReID usually consists of two
steps, feature representation and feature matching. Since
2014, deep models, especially CNN, have been widely used
for ReID to enhance both these two steps. At the early stage,
deep learning methods based on global features are the
preferred approaches. To obtain fine-grained features,
methods using local feature representation learning are
proposed. -ese two representation learning methods are
often combined for ReID tasks. Researchers have proposed
feature matching methods based on stripe [16–18] and grid
patch [19, 20]. Moreover, multichannel and multiscale
methods [21–23] are also used to capture local features.

Pursuing more robust feature representations, the
auxiliary information is introduced into the training, such as
viewpoint information [24], camera information [25, 26],
timing information [27, 28], and data augmentation [29].
Many studies [23, 30] have also modified the design of the
backbone network to better implement the characteristics of
ReID. Some researches use heuristic methods to enhance the
performance of classification [31–33]. In addition, unsu-
pervised learning methods [34–36] for ReID have also been
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Figure 1: Illustration about the correlation between background style and camera ID. Images with the same camera ID are highly similar in
their background, while those with different camera IDs differ significantly. (a) DukeMTMC-reID. (b) Market-1501.
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studied intensively in order to better implement in real-
world applications.

2.2. Visual Transformer. Transformer [5] was proposed in
natural language processing (NLP) tasks. It aims at building
encoders and decoders using attention mechanisms. Sub-
sequently, the transformer has been applied in vision tasks
such as target detection [37–39] and semantic segmentation
[40, 41]. Recently, in the field of image classification, ViT [6]
has applied pure transformer structures to nonoverlapping
image patches.

In order to decrease the amount of computation of ViT,
researchers have proposed many methods. Touvron et al.
[42] introduce a teacher-student strategy for knowledge
distillation, which can reduce ViT’s reliance on large
amounts of pretrained data. Wang et al. [43] introduce the
pyramid structure into ViT, making it better at doing dense
prediction as a backbone. Liu et al. [44] use the sliding
window method to reduce the computation amount of
transformer self-attention.

2.3. PersonReidentificationonTransformer. Some researches
on person ReID introduce a transformer into the existing
CNN architecture. For instance, Zhang et al. [45] integrate
transformer architecture into CNN and take advantage of
both CNN and transformer for person ReID, Li et al. [46] use
the transformer encoder-decoder architecture to implement
occluded ReID in a unified deep learning model, and Ma
et al. [47] combine local part features with an attention
mechanism. To overcome the shortcomings of CNN in
context-awareness and the loss of detailed information
caused by convolution and downsampling, He et al. [7]
propose a pure transformer-based object ReID framework
and are strongly competitive with CNN-based approaches.
Zhu et al. [48] propose an auto-aligned transformer that
adaptively locates human parts and nonhuman parts to
extract local part features.

2.4. Attention Mechanism for ReID. -e attention mecha-
nism is used in many computer vision problems [49]. Early
researchers typically use simple alignment methods to
mitigate the effect of background on human recognition.
Zheng et al. [50] propose a pedestrian alignment network
(PAN) which self-adaptively locates and aligns pedestrians
within the bounding box using the attention mechanism of
CNN. Guo et al. [51] design two branches to solve the human
part misalignment and nonhuman part misalignment
problems, where the branches focus on the human part and
latent part, respectively. Some saliency-based methods
[52–56] have also been proposed for mining different salient
features to obtain different clues of pedestrians.

In order to obtain finer divisions, researchers have
conducted a lot of research in semantic segmentation based
on attention mechanisms. Tian et al. [9] propose a deep
human parsing network for background-foreground sepa-
ration and by setting random backgrounds to do data
augmentation. Song et al. [57] use a fully convolutional

network (FCN) [58] for semantic segmentation to obtain
human mask, separate human body and background, and
then learn features separately from body and background
regions to eliminate the influence of background on iden-
tification. Cai et al. [59] design two attention modules based
on the JPPNet [60] semantic segmentation network for
filtering the influence of background and extracting global
and local features. Considering that the JPPNet model
cannot generate limb masks accurately, Huang et al. [61]
design SBSGAN to generate soft-mask images and mitigate
background rather than completely remove it to reduce
domain gaps. To enhance the focus on the discriminative
parts of the input scene, Ding et al. [62] use a feature mask
network to automatically learn global and local features
specific to the identity of certain target persons. However,
most of these methods are based on CNNs and are not
suitable for direct application to transformer structures.
-us, we still need better designs to enhance the discrimi-
native ability of the transformer for ReID.

3. Methodology

3.1. Overall Architecture. Various network architectures
have been introduced to learn the feature representation of
ReID. To have a better visual contextual association, we use
the ViTarchitecture to extract features on person ReID tasks.
Additional modules built on this architecture are designed to
improve its performance.

Figure 2 depicts the overall architecture of the proposed
method. During the training phase, the provided input
image is sliced into several same-sized blocks and trans-
formed into flattened patches by linear projection (e.g.,
convolution and flattening operations). A class token (CLS)
is attached in front of the flattened patches. A sequence of
position embeddings is summed with the patches to dis-
criminate the relationship between the different patches in
their position. -e prepared embeddings are fed into trans-
former encoders for encoding operations. Our approach ap-
pends an additional set of embeddings, called learnable
templates, after the CLS and the flattened patches.-e position
embedding is also expanded and summed. -en, the em-
beddings mentioned above are fed into the encoders together.

-e encoders of the transformer are made up of multiple
encoding layers. In each encoding layer, attention is com-
puted between each part of the incoming embeddings. After
multiheaded self-attention, multilayer perceptron, and
normalization operations, the new embeddings are output
from this layer and served as input to the next layer. In the
final layer, only the first embedding (i.e., CLS) in the output
is treated as the feature representation of this image and is
used for classification and loss calculation, while the other
embeddings are discarded. In the training phase, back
propagation optimizes the parameters of the entire network
as well as the proposed learnable templates.

3.2. Learnable Template. -e self-attention mechanism of
the transformer is to capture the context information of a
single image. If we turn to the mutual attention of two
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images, such a mechanism is excruciatingly time-consum-
ing. For image retrieval tasks like ReID, there is a similarity
computation process between different images. If we apply
the attention mechanism to similarity calculation (e.g., when
we input two images into a transformer), we must compute
mutual attention pairwise between query and gallery data-
sets. -e time complexity is O(Nq × Ng), where Nq and Ng

are the numbers of images in query set and gallery set,
respectively. In contrast, the time complexity of the tradi-
tional method is O(Nq + Ng). -us, it can be seen that
mutual attention is not reasonable, whether on dataset-based
learning or actual applications, since it significantly increases
the time spent on the ReID validation process. As an al-
ternative, we design an agent, which is a learnable template,
to avoid excessive time spent like this while increasing the
interaction between different image attentions.

-e standard ViT [6] model transforms the input image
from x ∈ RH×W×C to 2D flattened embedding
xp ∈ RN×(P2 ·C), where (H, W) is the resolution of the input
image, C is the number of channels, (H, W) is the resolution of
the patch, and N � HW/P2 is the number of patches. -e
learnable embedding, class token xcls, is prepended to the patch
sequence and used as the image representation. -e sequence
input to the transformer encoder can then be obtained as follows:

Z0 � xcls;F x
(1)
p ;F x

(2)
p ; . . . ;F x

(N)
p   + P, (1)

where Z0,P ∈ R(1+N)×D, F is the linear projection func-
tion, x(i)

p is the ith term of xp, P is a learnable position
embedding, and D is the dimension of each embedding.

We design a set of learnable template vectors in the same
shape as the flattened embeddings of the image and con-
catenate them to z0, as Figure 2 shows, resulting in a new
input sequence.

Z0 � xcls; F x
(1)
p ; F x

(2)
p ; . . . ; F x

(N)
p ;

T
(1)

;T
(2)

; . . . ;T
(N)

 + P,
(2)

where Z0,
P ∈ R(1+2N)×D, T(i) is the ith term of template

T ∈ RN×D, and P is the expanded position embedding.

In the training stage, each image will first use the
template to predict its own classification and then calculate
the loss function and update the template by back propa-
gation. -e template functions as a kind of bridge, enabling
indirect interactions between images. Since all images share
the same template in the prediction process, the template
will gradually learn to represent the common features, that
is, indistinguishable features, of all images.

3.3. Template-Aware Attention. Each transformer encoder
consists of multiheaded self-attention (MSA) and multilayer
perceptron (MLP). A layernorm (LN) and a residual con-
nection are set separately before and after the MSA and
MLP.

Zℓ′ � MSA LN Zℓ−1   + Zℓ−1, ℓ � 1, . . . , L,

Zℓ � MLP LN Zℓ′   + Zℓ′, ℓ � 1, . . . , L,
(3)

where L is the number of encoder layers.
-e self-attention module in MSA computes the re-

sponse sequences at each position by estimating the at-
tention scores and determining how much focus to place on
other positions.-e computation of attention scores is based
on query, key, and value vectors, which are derived from the
layer normed input vector. We compute the dot product
with a set of key vectors for each query vector, then nor-
malize, and translate them into probabilities with softmax to
obtain the attention weights. -e weights are applied to the
value vectors to get the final attention.

[Q,K,V] � ZUQKV,

Attention(Q,K,V) � Softmax
Q · K
⊤

��
dk

  · V,

(4)

where Q,K,V ∈ R(1+N)×D are the query, key, and value
vectors, respectively, which are generated by multiplying the
input sequence against three learned metrics UQKV ∈ RD×dk ,
and

��
dk


is used for normalization. Multiple self-attention

heads are computed in parallel.

Transformer Encoders

Linear Projection of Flattened PatchesLinear Projection of Flattened Patches

4 5 61 2 3 7 80 * 12 13 149 10 11 15 16

Patch + Position
Embedding

Re-ID Head

Learnable Templates

Side Information

Figure 2: Pipeline of proposed TAT. A set of learnable template embeddings, together with a class token (CLS) and flattened patches, are
designed as inputs to the transformer encoder. -e side information of the input image is used to select the appropriate template.
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We introduce the concept of template-aware attention
for the attention module. It is based on the learnable
template, allowing the transformer to focus on the area of
samples that are unrelated to classification, such as back-
ground or occlusion. We compute the attention scores
between different input vectors in the MSA and normalize
them to Sn.

Sn �

Qxp

QT

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ · K⊤xp
K⊤T ⎛⎝ ⎞⎠

��
dk



�
1
��
dk



Qxp
K⊤xp

Qxp
K⊤T

QTK
⊤
xp

QTK
⊤
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(5)

-en, the final attention is calculated.

Attention � Softmax Sn( 
Vxp

VT

 , (6)

where the vectors derived from the input i are packed into
three different matrices, namely, query vector Qi, key vector
Ki, and value vector Vi.

In addition to computing the self-attentionmap between
image patches, as shown in equation (5) and Figure 3, we
also need to compute the template-aware attention map
between image and template, as well as the self-attention
map of the template itself.

In the shallow encoder block, the Q, K, and V of image
and template can be clearly distinguished in terms of
function. Image patches focus more on distinguishable
features, whereas template patches focus more on indis-
tinguishable features. As the encoder blocks deepen, the two
kinds of features will gradually merge, and both focus on the
samples’ distinguishable features.

3.4. Template Expansion. Despite the fact that the template
has learned some indistinguishable features and diminished
the concern about them using template-aware attention, the
template’s information capacity is limited by its size. Due to
the large amount of data and the scene-bias problem, it is
difficult to collect, learn, and distinguish all the indis-
tinguishable features of the entire dataset with such a scale
of the template. However, arbitrarily increasing the size of
the template increases the time complexity linearly, which
is not reasonable. To solve this problem, we propose a
method of expanding the template based on side
information.

It is envisaged that the role of templates in the training
process is to learn the similarities between samples.
-erefore, it is reasonable to use the same template for
similar backgrounds and different templates for those with
significant different backgrounds. Here, we define the ex-
pand operation as simply increasing the number of tem-
plates to Nc, where Nc is the number of cameras, and obtain
the expanded template Tc ∈ RNc×N×D. For images with
camera ID r ∈ [1, Nc], we assign the rth template Tc[r] as

the corresponding template. During the training process,
each templateTc[r] can learn the indistinguishable features
of the images with camera ID r. Since the images with the
same camera ID have a large area of overlapping or similar
background, the indistinguishable features learned byTc[r]

will be very representative.

3.5. Training Objective. In the training phase, we use the
common cross-entropy loss and triplet loss to train the
model. -e output of the cls token Z

(0)

L in the last layer
represents the feature of the input image, and the other
outputs Z

(1: 2N)

L are discarded. -e cross-entropy loss is
calculated as follows:

Lcls(x, y) � −log
e

xy


C
c�1 e

xc 
, (7)

where xi is the probability that the image is predicted to be of
class i, y is the target, and C is the number of classes.

-e triplet loss is calculated as follows:

Ltri � dp − dn + α 
+
, (8)

where dp and dn denote the Euclidean distances between the
anchor and positive/negative sample features, respectively,
and hyperparameter α controls the margin of loss.

-e following is the final objective function of ourmodel:

L � Lcls + Ltri. (9)

4. Experiments

In this section, we describe the experimental details and
validate the effectiveness of the proposed TAT on several
widely used holistic datasets and an occluded dataset.

Layer Norm

Multi-Head
Attention

Layer Norm

MLP

+

+

Scale & Softmax

MatMul

Concatenate

MatMul

Figure 3: -e calculation of single-head attention (ignoring cls
token). Qxp

, QT and Kxp
, KT are used to do matrix multiplication

to get the four parts of the attention map.
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4.1. Datasets. We performed experiments with our model
on four datasets, Market-1501 [13], DukeMTMC-reID [14],
Occlude-Duke [15], and MSMT17 [63]. -e detailed in-
formation about each dataset is given in Table 1. One camera
ID indicates the same background in each dataset.

Market-1501 uses a total of 6 cameras, containing 5
high-resolution cameras and 1 low-resolution camera.
It captures 32,668 pedestrian image bounding boxes of
1,501 identities using Deformable Part Model detec-
tion. 750 identities are used for training, and 751
identities are used for testing. Each person has an
average of 3.6 images per viewpoint. Each annotated
identity presents in at least two cameras so that a cross-
camera search can be performed. For testing, 3,368
query images were used as the query set to match
among 19,732 gallery images with 2,793 distractors.
DukeMTMC-reID consists of 36,411 images acquired
from 8 different cameras and provided with manually
annotated bounding boxes. 1,404 identities appear in
more than two cameras, and 408 distractor identities
appear in only one camera. 16,522 images with 702 IDs
are randomly selected as the training set, while the
remaining 2,228 query images with 702 IDs and 17,661
gallery images with 702 IDs as well as 408 IDs (as
distractors) are assigned as the test set. One query
image for each ID in each camera is picked into the test
set, and the remaining images are put in the gallery set.
Occluded-Duke is a dataset on occluded scenes, which
is created by filtering from the DukeMTMC-reID
dataset. It contains 15,618 training images, 17,661

gallery images, and 2,210 query images. All query
images have occlusions (e.g., trees, cars, and other
people) in varying degrees, while the gallery set con-
tains both holistic and occluded images.
MSMT17 is a large multiscene multitime dataset that is
close to real scenes. It contains totaling 126,441
bounding boxes of 4,101 identities captured by 12

Table 1: Details of Re-ID datasets.

Dataset #ID #Train #Test #Image #Cam
Market-1501 1,501 751 750 32,668 6
DukeMTMC-reID 1,404 702 702 36,411 8
Occluded-duke 1,404 702 519 35,489 8
MSMT17 4,101 1,041 3,060 126,441 15

Table 2: Comparison with the state-of-the-art CNN-based and transformer-based methods on different datasets. DukeMTMC refers to the
DukeMTMC-ReID dataset. -e first group contains CNN-based methods, and the second group contains transformer-related methods.

Methods
Market-1501 DukeMTMC Occluded-duke MSMT17

mAP R− 1 mAP R− 1 mAP R− 1 mAP R− 1
PGFA [15] 76.8 91.2 65.5 82.6 37.3 51.4 — —
PCB+RPP [66] 81.6 93.8 69.2 83.3 — — 40.4 68.2
P2-Net [51] 85.6 95.2 73.1 86.5 — — — —
OSNet [23] 84.9 94.8 73.5 88.6 — — 52.9 78.7
HOReID [67] 84.9 94.2 75.6 86.9 43.8 55.1 — —
MGN [68] 86.9 95.7 78.4 88.7 — — 52.1 76.9
BAT-net [69] 87.4 95.1 77.3 87.7 — — 56.8 79.5
ISP [70] 88.6 95.3 80.0 89.6 52.3 62.8 — —
Pirt [47] 86.3 94.1 77.6 88.9 50.9 60.0 — —
PAT [46] 88.0 95.4 78.2 88.8 53.6 64.5 — —
AAformer [48] 87.7 95.4 80.0 90.1 58.2 67.0 63.2 83.6
TransReID [7] 89.5 95.2 82.6 90.7 59.2 66.4 69.4 86.2
ViT-baseline 86.5 94.2 79.3 88.9 53.1 60.5 61.0 81.8
TAT (ours) 89.7 95.8 82.5 91.5 60.6 68.2 59.1 80.5
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Figure 4: Overview of images from the MSMT17 dataset. With the
same camera ID, the backgrounds are variable and lack indistin-
guishable features over large areas.

Table 3: -e effectiveness of the template and its expansion. T
denotes the template, while Tc denotes the templates expanded
using camera information.

Methods
Market-1501 DukeMTMC-reID

mAP R− 1 mINP mAP R− 1 mINP
ViT-baseline 86.5 94.2 62.8 79.3 88.9 45.2
+ T 86.7 94.1 63.4 79.6 89.2 45.4
+ Tc 87.5 94.5 64.8 80.4 89.3 46.7

6 Computational Intelligence and Neuroscience



outdoor cameras and 3 indoor cameras, which are
captured under different weather and lighting condi-
tions. -e images of the dataset are randomly divided
according to the training-test 1 : 3 ratio, that is, the
training set contains 1,041 identities with a total of
32,621 bounding boxes, while the test set includes 3,060
identities with a total of 93,820 bounding boxes.

4.2. Implementation Details

4.2.1. Model Architectures. We use the base size of ViT
model proposed by Alexey et al. [6] as the backbone net-
work.-emodel contains 12 transformer encoder layers and
12-headed attention, with hidden size D � 768, normali-
zation parameter dk � 8, and multilayer perceptron (MLP)
size 3072. We also introduce those useful tricks proposed by
He et al. [7], including overlapping patches, jigsaw patch
module (JPM), and side information embeddings (SIE).

4.2.2. Training Details. -e input image is resized to 384 ×

128 and sliced into overlapping patches with size 16 × 16 and
stride 12 × 12. For data augmentation, we use horizontal
flipping, random cropping, and random erasing [29]. -e
transformer backbone is initialized with pretrained pa-
rameters on ImageNet [64]. -e batch size is set to 64, and
each ID has 4 images in a mini-batch. Triplet loss margin α is
set to 0. We use the SGD optimizer with 0.9 momentum and
1e-4 weight decay. -e training stage is conducted for 120
epochs, and the cosine decay learning rate is set with an
initial value 0.032. In the early stage of training, a linear
warmup is used to grow the learning rate. We set
warmup step � 1000. Our model is implemented using the
PyTorch framework and is experimented on 4 NVIDIA
GeForce RTX 3090 GPUs.

4.2.3. EvaluationMetrics. For evaluation, we adopt standard
metrics, namely, cumulative matching characteristic (CMC)
curves and mean average precision (mAP). All experiments
are run under the single query setting, and Rank-1 results are
reported. To be consistent with most other studies, post-
processing methods such as reranking [65] are not used in
the evaluation phase.

4.3. Comparison with State-of-the-Art Methods. We com-
pared our result with some state-of-the-art methods on three
widely used holistic benchmarks and one occluded bench-
mark, as shown in Table 2.

4.3.1. Results on Holistic Datasets. Our method performs
well on Market-1501 and DukeMTMC-reID. Since the
performance on these two datasets is almost saturated, the
mAP of TAT is very close to the mAP of those state-of-the-
art methods, but its Rank-1 outperforms the previous
methods by 0.4% and 0.8%, respectively. Yet on MSMT17,
our method performs worse, which may be related to the
overly complex background of this dataset. As shown in
Figure 4, there is no clear pattern exhibited by the

backgrounds of MSMT17, such as the samematerial of walls,
floor tiles, plants, and frequently photographed occlusions.
-erefore, our method is not appropriate for this dataset.
Furthermore, this result also demonstrates that our method
is specifically designed for indistinguishable features.

4.3.2. Results on Occluded Datasets. -e occlusions in the
occluded dataset are usually the same or similar objects. TAT
adapts better to the indistinguishable features and thus
should perform better on the occluded dataset. Experiments
show that our method yields excellent results on the oc-
cluded dataset Occluded-Duke, outperforming other state-
of-the-art methods by 1.4%/1.2% for mAP/Rank-1. Com-
pared with the holistic dataset, the performance improves
more significantly on the occluded dataset, which agrees
with the above conjecture.

4.4.AblationStudyofTemplate. From Table 3, we see a 0.2%/
0.3% improvement in mAP on the two datasets with the
addition of a single template.-e improvement is even more
pronounced when the template is expanded by introducing
side information like camera ID, resulting in a 1.0%/1.1%
improvement in mAP, respectively. We also introduced the
mINPmetric [2], which is used to evaluate the cost of finding
the hardest match, to see the boosting effect of the template.
-e best result boosts mINP by 2.0%/1.5% compared to the

Table 4: -e performance and standard deviation on the
DukeMTMC-reID dataset with three different initialization
strategies.

Init strategy mAP R− 1 mINP
Zero 80.34 ± 0.08 89.32 ± 0.10 46.89 ± 0.16
Normal 80.28 ± 0.06 89.17 ± 0.14 46.91 ± 0.14
Patch 80.46 ± 0.13 89.47 ± 0.08 46.97 ± 0.30

Ra
nk

-1
 (%

)
80.2 80.3 80.4 80.5 80.680.1

mAP (%)

89.0

89.1

89.2

89.3

89.4

89.5

89.6
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normal init
patch init

Figure 5: Scatter plot of the results of three different initialization
strategies on the DukeMTMC-reID dataset. Each strategy is
experimented five times.
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(a) (b)

Figure 6:-e figures show the mean attention maps of several transformer layers from shallow (leftmost) to deep (rightmost).-e attention
is indicated from low to high with the color blue to red. Howmuch attention the image pays to each region of itself is illustrated in (a). How
much attention the template pays to each region of the image is illustrated in (b). (a) Self-attention. (b) Template-aware attention.
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baseline. -ese experimental results demonstrate the ef-
fectiveness of our proposed template structure, where the
introduction of side information especially amplifies the
performance of the template structure greatly in the ex-
perimental results.

-e training time increases due to the introduction of the
template structure. On these two datasets, the introduction
of the template increases the training time from 1.97 h/2.43 h
to 3.83 h/4.69 h, respectively. According to our analysis, the
template increased the number of parameters of multi-
headed attention to approximately two times the original
number. -erefore, the increase in training time is basically
positively correlated with the increase in the number of
parameters.

4.5.Ablation Study of Parameter Initialization. -e learnable
embeddings in deep networks are usually sensitive to the
initialization of parameters. A fine initialization of param-
eters can well improve the results. Take position embedding
as an example, people usually initialize it using parameters
pretrained on datasets with an enormous number of images
like ImageNet-21k. However, it is difficult to pretrain on a
huge dataset for our self-defined learnable embedding
module.

To investigate the impact of different strategies for
initializing the templates, we conduct some experiments on
the DukeMTMC-reID dataset. In the experiments, three
different initialization strategies are introduced as follows: (i)
zero initialization, (ii) truncated normal distribution ini-
tialization, and (iii) patch initialization which use the flat-
tened patches of any person image in the dataset as the
templates’ initialization parameter, as follows:

T
(i)
init � Anyxp

F x
(i)
p  . (10)

We introduce the third strategy mainly for the reason
that there is something in common in the meaning of
templates and images. -e flattened patches of an image are
representations of the whole image, while templates are
representations of indistinguishable features. Patch initial-
ization may possibly avoid learning the template from
scratch while not spending additional pretraining time.

-e experimental results are shown in Table 4. -e re-
sults of the three initialization strategies are close to each
other. But compared with zero initialization and truncated
normal distribution initialization, patch initialization still
gives a stable improvement to the model. On both mAP and
Rank-1, patch initialization improves the performance by
0.12% to 0.30%.

Figure 5 shows the scatter plot of the experimental results.
According to the scatter plot, patch initialization results are
the best, followed by zero initialization, while normal ini-
tialization is the worst. It agrees with the conclusion drawn
from Table 4. -erefore, the proposed patch initialization
strategy is effective in boosting the model performance.

4.6. Visualization Analysis. In order to observe the mech-
anism of the learnable template, we visualized the attention

maps of the intermediate outputs of TAT during network
inference, as shown in Figure 6. It is observed that the self-
attention region of the image itself is gradually transferred
from the entire image at the shallower layers to the human
body region at the deeper layers. But the template-aware
attention works in a different way.While in the deeper layers
of the transformer, template-aware attention focuses on
almost the same areas as self-attention, namely, the human
body parts, and in the shallower layers, however, it focuses
on areas outside the human and surrounds the body. Par-
ticularly, in the last few images of Figure 6, template-aware
attention shows a strong focus on occlusions such as cars,
signages, and people.

-e visualizations show that in the shallower layers,
template-aware attention extracts invalid information
pieces, like backgrounds and occlusions, and discards them
in the deeper layers. -us, the model is allowed to focus on
people eventually. For this reason, TAT improves more
significantly on the occluded dataset than on other datasets,
since it filters out large areas of occlusion information in the
image.

5. Conclusion

In this paper, we propose a learnable template that can
adaptively learn the indistinguishable features of images.
-is module can improve the learning ability of the trans-
former by using template-aware attention. To expand the
template, we also introduce side information which en-
hances the template’s adaptability to different scenes. Ex-
tensive experiments show that template-aware transformer
(TAT) built using these methods outperform many state-of-
the-art methods.

From this study, we can also draw a useful conclusion for
the ReID problem—the learnable template is effective when
there are only a few background patterns, but the number of
each pattern is large. -e template can learn to focus on the
different parts of the image pair. By this way, the discrim-
ination between persons is enhanced in the few background
pattern scene. However, the shortcoming of this method lies
in the fact that it is not applicable to variable backgrounds. In
practical applications, the method is suitable for scenes with
a few fixed cameras. It is not recommended to use this
method if each camera has only a few pictures.

-is is a study on ReID, a popular ranking problem. One
of the remaining questions is whether these conclusions can
be generalized to other problems, for example, classification,
detection, generation. In the later scenes, the backgrounds
are different, and the foregrounds are very similar for the
same objects. It becomes an interesting topic to ask whether
the template can learn to focus on the object parts for the
image groups (the same class images), which deserves fur-
ther and comprehensive study.
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