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ABSTRACT Person re-identification (ReID) classifies the discriminative features of different people.
Human perception usually depends on the minority of discriminative colors to classify targets, rather than
the majority of mutual colors. ReID uses a small number of fixed cameras, which create a small account
of similar backgrounds, leading to the majority of background pixels becoming non-discriminative (this
is expanded in the feature map). This paper analyzes the distributions of feature maps to discover their
different discriminative power. It also collects statistics that classify feature map values into individual ones
and general ones according to the deviation of the mean value on each mini-batch. Finally, our findings
introduce a learning irregular space transformation model in convolutional neural networks by enlarging the
individual variance while reducing the general one to enhance the discrimination of features.We demonstrate
our theories as valid on various public data sets, and achieve competitive results via quantitative evaluation.

INDEX TERMS Irregular space transformation, discriminative power enhancement, convolutional neural
networks, person re-identification.

I. INTRODUCTION
Person re-identification (ReID) matches pedestrian images
across camera views at different locations and time. ReID
underpins many crucial applications in video surveillance,
such as long-term cross-camera tracking, video retrieval, etc.
It has been proven an academic challenge due to various
illuminations, occlusions, viewpoints, background clutters,
and image resolutions [1]. Therefore, ReID research becomes
popular over the last few years, and a wide variety of features,
experimental protocols, and evaluation metrics have been
employed. Karanam et al. [2] implemented a unified code
library that includes 11 feature extraction algorithms and
22 metric learning and ranking techniques.

Recently, many studies have adopted deep learning
approaches to solve the ReID problem using three categories:
(1) The classification network [3]–[5], which classifies
images into person categories with convolutional neural
networks (CNNs), and then extracts features to calcu-
late and rank the similarity of images; (2) the siamese

network [6]–[9], which is a method that takes two images
as input and then generates either a similarity score between
the two images or a classification of an image pair, which
depicts either the same pedestrian or a group of different
pedestrians. Its main focus is how to effectively merge the
cross-corresponding pairs into one; (3) the triplet frame-
work [10]–[12], which uses the input of three images – usu-
ally a matched image pair and a mismatched image – and
outputs features by improving the loss function that mini-
mizes the distance of the matched images while maximizing
the mismatched images.

Human perception usually classifies targets by discrim-
inative characters. If a particular color, e.g., red as shown
in Fig. 1(a), is different from the others in some images
when observing a person’s appearance, we can distin-
guish people using this color – this is called a discrim-
inative character. However, if the majority of people are
dressed in red, as shown in Fig. 1(b), we need to choose
another color as the discriminative color. Thus, in the
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FIGURE 1. Discriminative color in the Market-1501 dataset. (a) Red is a
discriminative color. (b) The majority of people are dressed in red.
(c) The same viewpoint with a similar background.

end, the high discriminative color becomes the minority
color.

Furthermore, there are only a few fixed cameras in per-
son ReID. The fixed camera leads to similar backgrounds
with an identical viewpoint, as shown in Fig. 1(c), while the
small number of cameras causes a small number of different
backgrounds. Thus, most of the background pixels are in the
majority count and contain non-discriminative colors.

In this paper, we expand this point of view to the feature
map. The discriminative power of the feature map is taken
into account, and an irregular space transformation learning
method is introduced to increase the discrimination. Themain
goal is to enhance the competitive power of particular values
and increase the discriminative ability of the values that can
protrude in the layer. To accomplish this, the feature map
values are separated into two categories, where the points
around the mean value are general data, which only carry a
small amount of information. Their representation space is
decreased to provide themwith a greater probability of failure
in the competition of pooling layer. The remaining values are
individual points that represent the kernel feature, and the
representation space is expanded to achieve better expression
power.

The main contributions of this paper are threefold:
(1) The concentration phenomenon and the discriminative
power measurement of the feature maps, which enable us
to analyze the distribution of the feature map values and
distinguish them into individual and general values; (2) an
approach that enhances this discrimination by compressing
the representation space of the general points and expand-
ing the individual points, which improves the discriminative
power of retrieval ranking; and (3) the learning method that
determines the border and transformation of individual and
general data, which is utilized to achieve better accuracy in
the existing models.

II. RELATED WORK
The Siamese network is a popular framework in person
ReID that usually focuses on the concatenating of the

cross-corresponding pairs when two sub-networks are con-
catenated into one network. Li et al. [6] used a full con-
nection layer to connect two sub-networks. Ahmed et al. [8]
designed a layer that captures the local relationships between
the two input images based on mid-level features from each
input image. Zhu et al. [13] computed both the element-wise
absolute difference and multiplication of the CNN learning
feature pair when two sub-networks merge. Wu et al. [14]
used a layer to calculate neighborhood range differences,
and develop an adaptive Root Mean-Square gradient descent
algorithm.

A crucial step in classification is extracting discriminative
features from the samples, which focuses on the correlation
of patch pair matching during the initial stage of person
ReID study. There are a few conventional manual distill-
ing methods that are based on this idea [15]–[19]. These
approaches are also adopted to build the Siamese networks.
Yi et al. [7] segmented an image into top, middle and bot-
tom parts, and learned features using a symmetry structure
with two sub-networks that are connected by a cosine layer.
Huang et al. [20] computed the cross-data, cross-map and
cross-space differences between paired corresponding parts
using different subnets. Zheng et al. [21] aligned pedestri-
ans to a standard pose with a PoseBox structure, where
the original image and the PoseBox are processed by two
weight unshared subnets, and a pose estimation confidence
is inputted before the two networks fully connect. Some
asymmetrical Siamese architectures have also been devel-
oped. Li et al. [9] fed low- and high-resolution images to
two subnets, whereas Wu et al. [22] fused a CNN and some
different handcrafted features into one network. Li et al. [23]
learned and localized deformable pedestrian parts, and this
was then used to learn powerful features with the full body.

The triplet framework is another network that takes the
correlation of whole images into account and uses the triplet
loss function for training. Ding et al. [11] fed three images
into the network, where two images belonged to one person
while the third image did not belong to anyone. Then, a loss
function was devised to make the L2 distance in the feature
space between the matched pair smaller than the mismatched
pair in each triplet. Cheng et al. [10] designed another loss
function to train the network models in order to make the
distance between the matched pairs less than a predefined
threshold and the mismatched pairs in the learned feature
space. Wang et al. [24] fused different part features and used
multiple classifiers to match the pedestrian.

The rank learning methods also adopt triplet networks.
Wang et al. [12] used two sub-networks for a pair of input
images, but two single-image representations and a cross
one were calculated, whereas the triplet comparison objec-
tives were combined to improve the matching performance.
Liu et al. [25] focused on parts of person image pairs after
reviewing them and adaptively comparing their appearance
in triplet networks.

Some other architectures are regarded as a generaliza-
tion of triplet networks. Wang et al. [26] replaced the image
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pairs with ranking lists as training samples, and devel-
oped a listwise loss with adaptive margin. Chen et al. [27]
designed a quadruplet loss, which led to model output with
a larger inter-class variation and a smaller intra-class vari-
ation compared to the triplet loss. Lin et al. [28] exploited
consistent-aware information under a deep learning frame-
work to obtain the maximal correct matches for the whole
camera network. Zhou et al. [29] used the point to set (P2S)
metric to replace the point to point (P2P) distances, which
jointly minimized the intra-class distance and maximized the
inter-class distance.

Other researchers regarded the ReID problem as a clas-
sification problem, where a single network is applied to
classify each image into a person category in training.
In this case, the CNN features are extracted from the net-
work in testing to calculate the similarity of the image
pairs. Xiao et al. [3] developed a domain guided dropout
algorithm based on the observation of CNN’s training data
from cross domains. It concluded that some neurons learned
representations shared across several domains, while some
others were effective for a specific domain. In addition to
those facts, an inception layer, which is the nets-within-
nets architecture of GoogLeNet [30] was adopted in that
research. Chen et al. [4] combined two images horizontally
to form an image that was used as input, and proposed
a learning-to-rank algorithm to minimize the cost corre-
sponding to the ranking disorders of the gallery. Franco
and Oliveira [5] extracted features from intermediate and top
layers. The former was wrapped in covariance matrices and
integrated into the top layer features. Su et al. [31] proposed
a semi-supervised framework to learn attributes that obtained
a superior generalization ability across different datasets.

All of the aforementioned researches concentrated on the
framework improvement, whereas other data distribution
studies also produced important promotion for CNN. Up until
now, dropout [32], [33] is a regularization scheme for the pur-
pose of avoiding over-fitting in neural networks by preventing
complex co-adaptations on training data. This creates major
improvements over other regularization methods. Batch Nor-
malization [34] accelerates training by reducing the internal
covariate shift, where higher learning rates can be used.

The mid-level feature representation has also been a
research focus in person ReID. Lin et al. [35] learned a cor-
respondence structure to capture the patch-wise spatial pat-
tern, and proposed a global matching constraint to exclude
cross-view misalignments. Liu et al. [36] proposed a method
to learn attentive deep features from an attention-based deep
neural network to capture multiple attentions from low-level
to semantic-level. Zhao et al. [37] proposed a scheme that
learned different semantic features from different body
regions, which were merged with a competitive scheme.

In this paper, we focus on the distribution and transfor-
mation of training data. Usually, non-linear transformation
of outputs of convolutional layer is achieved by the acti-
vation layer, including Sigmoid, ReLU [38], PReLU [39],
etc. Agostinelli et al. [40] designed a form of adaptive

piecewise linear (APL) activation function which is learned
independently by each neuron. The activation function is used
to remove the redundancy but retains the features of data,
whichmakes the classification easier. However, the activation
function is based on a neuron, which ignores the relation of
different neurons.

Our approach takes into account the overall distribution
of training data and looks for the dispersion phenomenon
of values. Based on the fact that different data has different
discriminative power, the training data is divided into individ-
ual and general categories. An irregular space transformation
model is proposed to improve the discrimination of the train-
ing data, which is based on the overall statistics of a feature
map. After the transformation, the discrimination is increased
and transmitted to the final Softmax classifier, layer by layer.
Experimental results show that this application considerably
increases the accuracy of identification.

III. MOTIVATION
As discussed in Section I, the high discriminative color is the
minority color. We generalize this perspective to the feature
map, i.e., the minority of the feature map has more discrim-
inative information. Since the closer the two data are, then
the smaller the differentiation is, we define the discriminative
power as the absolute difference of two data, as shown in
Eq. 1, where z(l)k is the value of a feature map element Z (l)

k , l
is the layer index, and i, j denote the ith and jth component of
data in layer l, respectively.

4z(l)ij = |z
(l)
i − z

(l)
j |. (1)

Multiplying a constant for each z(l)i can achieve discrimi-
native power enhancement, but the convolutional operation
may pull the data back to its original value. Let z(l+1)i =

λz(l)i where λ > 1, then 4z(l+1)ij = λ4z(l)ij > 4z(l)ij .

Suppose there is a convolutional operator of z(l+2)i =

f
(∑n

k=1 w
(l+1)
k z(l+1)k + b

)
that is applied on each kernels,

where w(l+1)
k , b and n are weight, bias and pixel number of

kernel of layer (l + 1), respectively. The weights only need
to be reduced to 1

λ
of their original value, then the output

is the same, i.e., z(l+2)i = f
(∑n

k=1
1
λ
w(l+1)
k z(l+1)k + b

)
=

f
(∑n

k=1 w
(l)
k z

(l)
k + b

)
.

When we review the feature map of CNNs, we discover
that most of the data are near the mean, as shown in Fig. 2(a).
The training data are collected from a person ReID dataset
named Market-1501 [41], where the vertical axis denotes
the frequency of data, and µ and σ are the mean and vari-
ance, respectively. Fig. 2(b) shows an intuitive distribution
of 1000 randomly selected data, where the horizontal axis
denotes the randomly generated coordinate that is only used
to avoid the overlap of points. It is apparent that the training
data are concentrated in the interval of [µ − cσ,µ + cσ ],
where c is a positive parameter, and c = 1.2 in Fig. 2. The
data around the mean value only carry a small amount of
information, which are called general data. The remaining
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FIGURE 2. Distribution of training data on Market-1501 dataset.
(a) Frequency histogram of 185,856,000 training data. (b) 1,000 randomly
selected training data.

data, which have more discriminative information, are called
individual data.

In order to directly increase the discrimination in training,
our idea is to shrink the space of general data while expand the
individual one’s, i.e., apply a piecewise linear transformation
on the training data, which is shown in Fig. 3. First, the data
are split to three intervals (−∞, µ − cσ ), [µ − cσ,µ + cσ ]
and [µ + cσ,+∞] by a parameter c(c > 0), mean µ and
variance σ . The values in [µ − cσ,µ + cσ ] are general
data, whereas the others are individual ones. Second, apply
different linear transformations on each interval, which is
shown in Eq. 2. We discuss how to determine the parameter
in Section IV-C.

z(l+1)j = kjz
(l)
j + bj

s.t. k1 > 1, 0 < k2 < 1, k3 > 1, j = 1, 2, 3. (2)

IV. LEARNING IRREGULAR SPACE TRANSFORMATION
A. FRAMEWORK
In order to protrude the individual data, we need to use the
mean and the variance to separate them from the others.

FIGURE 3. Irregular space transformation.

This means that we need a statistics collection procedure for
each mini-batch. Afterwards a transformation is introduced
to make the individual data more important than the general
ones. Fig. 4 shows the framework of the Learning Irregular
Space Transformation (LIST) model.

The forward propagation of training includes three stages:
1) Collecting statistics to obtain the local mean and vari-

ance of a mini-batch, which is the foundation of the
training data classification. The statistics are accumu-
lated and stored as global ones for the testing pro-
cedure. The processing details are introduced in sub-
section IV-B.

2) Classifying data into individual and general ones is
based on the crowding position (mean value) of data
and the drifted distance from the center (variance). The
training procedure alternatively uses local or global
statistics for general and individual data classification,
whereas the testing procedure uses the global ones.

3) An irregular space transformation is applied to different
categories of data (sub-section IV-C).

The operation of back propagation is similar to other types
of layers. We need to calculate the error terms and the partial
derivatives of the cost function, which are transmitted from
the next layer to the previous layer. This procedure is formu-
lated and discussed in sub-section IV-D.

B. DATA CLASSIFICATION
The method to enhance discrimination is to increase the
intra-class distance while downgrade the inner-class one.
We need to distinguish which class a training value
belongs to. As mentioned in section I, we consider the data
that are concentrated around the mean value to be the general
data, which have little information to classify pedestrian. The
rest are the individual ones, which express the discriminative
characteristics of a person.

Suppose there are m values {z(l)1 , z
(l)
2 , . . . , z

(l)
m } in a

mini-batch of layer l, we collect statistics for the mean value
and variance as shown in Eq. 3. The general data contain
values in interval of [µ− cσ,µ+ cσ ], whereas the individual
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FIGURE 4. Framework of LIST model.

ones are in (−∞, µ− cσ ) ∪ (µ+ cσ,+∞).

µ(n) =
1
m

m∑
k=1

z(l)k , σ 2
(n) =

1
m− 1

m∑
k=1

(
z(l)k − µ

)2
, (3)

where µ(n) and σ 2
(n) are the local mean value and variance of

the nth mini-batch, respectively.
Once the mean and variance are calculated for each mini-

batch, they are iteratively accumulated to the global mean
and variance, respectively. In the testing procedure, the global
statistics are used to replace the mini-batch computing. In the
training procedure, the local or global statistics are alterna-
tively used for computing. Suppose the global mean value
from the 1st to the nth mini-batch is µn = 1

mn

∑mn
k=1 z

(l)
k , then

the global mean value from the 1st to the (n+1)th mini-batch
is calculated by

µn+1 =
1

m(n+ 1)

m(n+1)∑
k=1

z(l)k

=
n

n+ 1
µn +

1
n+ 1

µ(n+1), (4)

where µ(n+1) is the local mean value of the (n + 1)th mini-
batch.

Similarly, the global variance is computed by

σ 2
n+1 =

1
m(n+ 1)− 1

m(n+1)∑
k=1

(z(l)k − µn+1)
2

=
(mn− 1)σ 2

n + (m− 1)σ 2
(n+1)

m(n+ 1)− 1

+
mn(µn − µ(n+1))2

[m(n+ 1)− 1] (n+ 1)
, (5)

where σ 2
n+1 and σ 2

(n+1) are the global and the (n + 1)th

mini-batch local variance, respectively.
According to Eq. 4 and Eq. 5, the global mean and variance

of the (n+1)th iteration are only dependent on the nth iterative

global and local mini-batch ones. Thus, the global statistics
are computed during training, and no additional statistics
collection procedure is required in testing.

C. IRREGULAR SPACE TRANSFORMATION
We use the piecewise linear transformation to achieve the
shrinking and increasing operation for general and individual
training data, as shown in Fig. 3. The transformation is subject
to the following regulations, where w1,w2 and c are learning
parameters, L1,L2 and L3 are three lines in Eq. 2 when j =
1, 2, 3, respectively.
• The general interval [µ− cσ,µ+ cσ ] is shrunk to [µ−
w1cσ,µ+ w1cσ ], where 0 < w1 < 1.

• L1 and L3 keep symmetry, i.e., k1 = k3.
• The individual intervals (−∞, µ − cσ ) and (µ +
cσ,+∞) are increased, i.e., k1 = k3 = w2 > 1.

• L1 and L2 intersect at point (µ− cσ,µ− w1cσ ).
• L2 and L3 intersect at point (µ+ cσ,µ+ w1cσ ).
According to these constrains and Eq. 2, we can obtain the

piecewise linear function, as shown in Eq. 6.

z(l+1)k =


w2[z

(l)
k −(µ−cσ )]+ (µ−w1cσ ), z(l)k <µ−cσ

w1[z
(l)
k − µ]+ µ, µ− cσ ≤ z(l)k ≤ µ+ cσ

w2[z
(l)
k −(µ+cσ )]+ (µ+ w1cσ ), z(l)k >µ+cσ

s.t. c > 0, 0 < w1 < 1, w2 > 1. (6)

It is important to note that the shrunk interval is not
[µ − cσ,µ + cσ ], but [µ − w2−w1

w2−1
cσ,µ + w2−w1

w2−1
cσ ],

as shown in Fig. 3. Because c,w1 and w2 are learned param-
eters, the real interval size can be adjusted to a suitable one
automatically.

Another thing to note is that the parameters of c,w1 andw2
are different in each channel of each LIST layer. Because the
LIST layer is placed after every Batch-Normal layer, if there
are nL LIST layers in a network, and ni channels in the
ith layer, the total number of groups of parameters c,w1 and

w2 will be
nL∑
i=1

ni.
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D. BACKPROPAGATION
In the error term calculation, the variance appears in the
denominator. To avoid dividing a number by zero, σ is
replaced by

√
σ 2 + ε, where ε is a small positive number.

After this substitution, the partial derivative of the statistics
are computed as Eq. (7) and Eq. (8).

∂µ

∂z(l)k
=

1
m
,

∂σ 2

∂z(l)k
=

2
m− 1

(z(l)k − µ). (7)

∂
√
σ 2 + ε

∂z(l)k
=

1

2
√
σ 2 + ε

·
∂σ 2

∂z(l)k
=

z(l)k − µ

(m− 1)
√
σ 2 + ε

. (8)

Suppose the loss function and the error term of the (l+1)th

layer are J (·) and δ(l+1)k , respectively, we can obtain the error
term of the l th layer according to the chain rule of derivative as

δ
(l)
k =

∂J (·)

∂z(l)k
=

∂J (·)

∂z(l+1)k

·
∂z(l+1)k

∂z(l)k

= δ
(l+1)
k


(w2 − w1)c̃z

(l)
k + w̃2, z(l)k < µ− cσε

w̃1, µ− cσε ≤ z
(l)
k ≤ µ+ cσε

(w1 − w2)c̃z
(l)
k + w̃2, z(l)k > µ+ cσε,

(9)

where z̃(l)k =
z(l)k −µ
(m−1)σε

, σε =
√
σ 2 + ε, and w̃i =

wi
(
1− 1

m

)
+

1
m .

Let I {·} be the indicator function, which is shown in Eq. 10,
the partial derivatives of the cost function can be calculated
by Eq. 11, 12 and 13.

I {x} =

{
0, x = false

1, x = true.
(10)

∂J (·)
∂c
=

m∑
k=1

∂J (·)

∂z(l+1)k

·
∂z(l+1)k

∂c

= (w2 − w1)σε
m∑
k=1

δ
(l+1)
k I {z(l)k < µ− cσε}

− (w2 − w1)σε
m∑
k=1

δ
(l+1)
k I {z(l)k > µ+ cσε}. (11)

∂J (·)
∂w1

=

m∑
k=1

∂J (·)

∂z(l+1)k

·
∂z(l+1)k

∂w1

=

m∑
k=1

δ
(l+1)
k I {µ− cσε ≤ z

(l)
k ≤ µ+ cσε}[z

(l)
k − µ]

−c σε
m∑
k=1

δ
(l+1)
k I {z(l)k < µ− cσε}

+ cσε
m∑
k=1

δ
(l+1)
k I {z(l)k > µ+ cσε}. (12)

∂J (·)
∂w2

=

m∑
k=1

∂J (·)

∂z(l+1)k

·
∂z(l+1)k

∂w2

= −

m∑
k=1

δ
(l+1)
k I {z(l)k < µ− cσε}[z

(l)
k − (µ− cσε)]

+

m∑
k=1

δ
(l+1)
k I {z(l)k > µ+ cσε}[z

(l)
k − (µ+ cσε)].

(13)

V. EXPERIMENTS
A. DATASETS
In this section, we evaluate the proposed method on six
different datasets. Table 1 shows the camera, identity (ID) and
image numbers.
CUHK01 [42], [43] includes 3,884 images of 971 pedes-

trians captured by two disjoint cameras, with each person
having two images for each camera. Large inter-camera
variations in this dataset make the person ReID experiment
challenging.
CUHK03 [6] is one of the largest person ReID datasets,

which has 1,467 IDs from five different pairs of cameras on
campus. The detected and manually labeled bounding boxes
are all used for training in our experiments, and have an
average of 4.8 detected and manually labeled bounding boxes
in each view.
Market-1501 [41] is another largest dataset, which con-

tains 32,688 bounding boxes of 1,501 identities produced
by Deformable Part Model (DPM). Each person is cap-
tured by 2 ∼ 6 non-overlap cameras. This dataset contains
2,798 distractors (produced by DPM false detection) and
3,819 junk images (has zero influence to the ReID accuracy)
in the test set.
PRID2011 [44] records 385 persons from one view and

749 from the other one. The first 200 persons appear in both
camera views. We use the multi-shot images for training and
the single-shot ones for testing.
i-LIDS [45] person ReID dataset comes from the

2008 i-LIDS Multiple-Camera Tracking Scenario (MCTS)
dataset, which includes 476 images of 119 individuals using
surveillance cameras in an airport.
VIPeR [46] contains 1,264 images of 632 people from two

cameras. This dataset is very challenging due to the low image
quality, coupled with large variations in illumination, poses
and viewpoints.

Table 1 also shows the settings for the training, valida-
tion and testing groups. In the CUHK01, i-LIDS and VIPeR
datasets, 485, 60 and 100 IDs are randomly chosen as the
testing sets and the remainders are the training sets. In the
CUHK03 dataset, the 20th pre-split group is used as the
testing set. In the PRID2011 dataset, the first 100 IDs are used
as the testing set. The grouping of Market-1501 is followed
by the publisher’s groups.

B. SETTINGS AND EVALUATION PROTOCOLS
We employ the popular networks, GoogLeNet-v3(Inception-
v3) [47] and ResNet50 [48], as the baselines. We first classify
identities using the networks with the softmax with loss
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TABLE 1. Dataset grouping for training, validation and testing.

layer, and then extract features to compute the distance to
rank the candidates, but there are some differences from the
original frameworks. First, we add a fully connected layer
(with 384 outputs) before the classifier layer (with 3,844 out-
puts), which is used to extract features for the classification
network. Second, we use the Cosine Distance to compute the
rank list after the features are extracted. Third, our LIST layer
is placed after every batch normalization layer of Inception-
v3 and ResNet50, which are called Inc-LIST and Res-LIST
for short, respectively.

The implementation framework of our LIST model is
based on CAFFE [49]. We train the networks 80,000 itera-
tions by jointly crossing the six datasets, and then fine-tune
40,000 iterations on each dataset. Because there are totally
3,844 identities in the six training and validation sets, we clas-
sify the images into 3,844 categories in the jointly training.
In the fine-tuning process, the number of categories is the
same as in the jointly training, although some identity values
are never used in a single dataset. For example, there are
751 identities in Market-1501, then there are 3, 844− 751 =
3, 093 identity values that are never taken in the fine-tuning
on this dataset. In testing, although no testing identity appears
in the 3,844 identities, we still use the same number of
categories to classify persons and extract features from the
fully connected layer, and then use the Cosine Distance to
rank the gallery identities.

In the experiments, we employ the commonly used Rank-1
accuracy, Cumulative Match Characteristic (CMC) curve,
and the mean average precision (mAP) to evaluate the meth-
ods. Rank-1 accuracy refers to the traditional notion of clas-
sification accuracy, which is the percentage of probe images
that are perfectly matched to their corresponding gallery
image. The CMC curve summarizes the chance of the correct
match appearing in the top 1, 2, . . . , n of the ranked list. The
first point of the CMC curve is the Rank-1 accuracy.

If multiple gallery ground truths exist, the CMC curve
is biased because ‘‘recall‘‘ is not considered [41]. In this
case, the Precision-Recall curve for each query is calculated,
which is known as average precision (AP). Then, the mean
value of the APs of all queries, i.e., the mAP, is calculated,
which considers both precision and recall of an algorithm,
thus providing a more comprehensive evaluation.

In the experimental datasets, each ID has multiple
instances, except for VIPeR. Following the popular used eval-
uation protocols, we only apply one query image for search.

There are two methods [50] to calculate the CMC curve:
• single-shot versus single-shot (SvsS), if each image in a
set represents a different individual;

• single-shot versus multiple-shot (SvsM), if each ID has
several images in gallery.

In the case of the former, we randomly choose an image for
each ID to calculate the CMC curve, and repeat it 100 times
to compute the mean as the final result. For the later, only
the first match is counted regardless of how many ground
truth matches are in the gallery – this is usually called Single
Query (SQ) [41], [51]–[54] (from the query viewpoint, we do
not know that the two images belong to one person) or Multi-
shot [52] (from the candidate viewpoint, all gallery images
are used) for short.

There are also two methods to calculate the AP. Suppose
there are a total of n images andmmatched images to a query
image in the gallery, and the ranks of the matched images
are s1, s2, . . . , sm. Let P(k) be the precision at a cutoff of
k images, and 4r(k) be the change in recall that happens
between cutoff k−1 and cutoff k . Eq. 14 shows the calculation
of the traditional Average Precision (TAP), whereas Eq. 15
shows the Interpolated Average Precision (IAP) – usually,
both are all called AP. Because the TAP is not a monotonic
function, the IAP is more popular in image retrieval, so we
use that to calculate the mAP in our experiments.

AP =
n∑

k=1

P(k)4r(k) =
1
m

m∑
k=1

k
sk
. (14)

AP =
n∑

k=1

max
k̃≥k

{
P(̃k)

}
4r(k) =

1
m

m∑
k=1

max
k̃≥k

{
k̃
s̃k

}
. (15)

C. EFFECTIVENESS ANALYSIS
Fig. 5 shows some matching examples of baseline and LIST
on the market-1501 dataset, which is based on the experi-
mentation of single query measurement. The left in a dashed
rectangle is the probe image, and the two rows on the right
are the top 1–20 matched results of baseline and LIST. The
label under each image is the ID, in which the first character
of ‘‘P’’ or ‘‘G’’ means ‘‘Probe’’ or ‘‘Gallery’’ respectively,
and the following number is the ID number. The blue decimal
under each gallery label is the Vector Cosine Angle (CVA)
of that gallery image and the probe image. The images in
the red and blue rectangles are the correctly matched and
mismatched ones, respectively.
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FIGURE 5. Examples comparison of baseline and LIST on the market-1501 dataset.

The first query of P0028 shows that it has a similar back-
ground with G0615 and G0107. The LIST method correctly
matches G0028 in the top 6 rank whereas the baseline does
not, which shows that the LIST has higher discriminative
ability. The LIST also has a wider CVA range (from 41.89◦

to 59.77◦) than the baseline (from 50.72◦ to 61.26◦). The
queries of P0615 and P0107 also depict that the LIST method
is less affected by the similar backgrounds than the baseline.

D. COMPARISON WITH THE BASELINE
Table 2 and Table 3 compare the Inc-LIST and Res-LIST
with their baselines, respectively, where the SvsS, SQ

rank-1 accuracy and mAP are given. For the two frameworks,
it is apparent that the rank-1 SvsS accuracy of our LISTs
are higher than that of the corresponding baselines on all six
datasets. In addition to that, the rank-1 SQ accuracy and mAP
of the LISTs are higher than the baselines on five datasets,
except for the i-LIDS dataset.

There are two reasons why the SQ and mAP of the LISTs
are lower than the baselines on i-LIDS. (1) The i-LIDS has
only 238 training images, which is an insufficient number
to collect the discriminative statistics. (2) The occlusion by
other humans and accessories (the bags, draw-bar boxes, etc.)
in the airport scene results in very different backgrounds,
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TABLE 2. Comparison with the Inception-v3 baseline.

TABLE 3. Comparison with the Resnet50 baseline.

which leads to the results that the background pixels being in
the minority count and the representation space is expanded.
As such, the inaccurate and false discriminative information
leads to a negative influence for ranking.

The performance gain on the VIPeR dataset is much higher
than the other ones, because the background of VIPeR ismore
similar than that of other datasets. Thus, the most background
pixels are in themajority count, and their representation space
is shrunk. This protrudes the foreground pixels and achieves
better performance.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
We compare the results of the proposed Inc-LIST and
Res-LIST approaches against other state-of-the-art methods
using the SvsS CMC curve with the top 1–20 ranks, the sin-
gle query top 1, 5 and 10 ranks, and the mAP evaluation.
All the compared results come from their published papers.
Some papers only report discrete ranks (e.g. top 1, 5, 10 and
20 ranks), so we connect them in the CMC curve graph
and ignore the missing ranks. For those reports ranking less

than 20 (e.g. top 1 to 10 ranks), we only draw the reported
segments and neglect the remainders.

This research compares LIST with 19 person ReID
approaches using the SvsS CMC curve, including AMC-
SWM [60], CIND [8], CSL [15], DGD [3], DVDL [61],
GOG [62], JLSCR [12], JUDEA [9], LDCF [23],
LOMO [59], LRME [63], LSSCDL [64], MLAPG [65],
MTL-LORAE [66], Quadruplet [27], RDC [11], SCSP [67],
SSM [57], and TCP [10], which are shown in Fig. 6. Experi-
mental results show that our Inc-LIST method has increased
over the rank-1 performance by 10.42%, 19.52%, 5.83%,
14.4%, 2.08% and 18.27% on the datasets of CUHK03
(87.05%), Market-1501 (74.95%), CUHK01 (77.63%),
PRID2011 (55.00%), i-LIDS(62.48%) and VIPeR(72.00%),
respectively. In addition to those facts, the TCP method
outperformed the LIST from the top 4 rank on the i-LIDS
dataset, because there are no sufficient images to collect the
discriminative statistics.

TABLE 4. Comparison with state-of-the-art.

When we compared Inc-LIST with ReID methods using
the SQ and mAP evaluation, we only provided the results on
CUHK03 and Market-1501 because of the lack of reported
performance on the other datasets. Table 4 shows the compar-
ison results with 9 methods, including APR [53], DNS [59],
Embedding [55], LOMO+XQDA [58], MSCAN [23],
Re-ranking [56], SI-CI [12], SSM [57] and TriNet [54]. It is
evident that our Inc-LIST method outperforms all the com-
pared state-of-the-art ones.

It must be noted that, to overcome the scale issue of small
datasets, we firstly train the networks by jointly crossing
the six datasets, and then fine-tune on each dataset. This
makes the features more robust on different datasets but
less discriminative on the larger ones themselves [3]. In the
compared state-of-the-art methods, DGD, CIND, Quadruplet
and TriNet trained in the same or a similar way, but the others
did not.

Another issue to be aware of is that ResNet50 performs
much worse than the Inception-v3 when we regard the ReID
as a classification problem, and this leads to the similar
result for Res-LIST and Inc-LIST. Using softmax with loss in

53222 VOLUME 6, 2018



Y. Zheng et al.: Learning Irregular Space Transformation for Person ReID

FIGURE 6. CMC curves of different methods on six datasets. (a) CUHK03. (b) Market-1501. (c) CUHK01. (d) PRID2011. (e) i-LIDS. (f) VIPeR.

ResNet50 is also worse than the triplet loss (TriNet), which
leads to the worse performance of Res-LIST than the TriNet
in Table 4.

VI. CONCLUSION
This paper focused on the feature map distribution and found
a rule to quantitatively measure the discriminative power of
the feature map. The study proposed a method to distinguish
individual data from general ones in order to separate the
space into several segments. It also presented an irregular
space transformation that enhances the classification accu-
racy. The proposed approach achieved high discriminative
and generalization power. We experimented on six person
ReID datasets to validate the effectiveness of our method.
By applying on the Inception-v3 and ResNet50 networks of
our LIST layer, we proved that the proposed approach can be
used in most of the existing classification CNNs. Moreover,
our results exceeded state-of-the-art methods with sufficient
training data, and we demonstrated the effectiveness of the
proposed method.
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