
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 03/14 pp1009–1022
DOI: 10 .26599 /TST.2022 .9010045
Volume 28, Number 6, December 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Optimized Consensus for Blockchain in Internet of Things
Networks via Reinforcement Learning

Yifei Zou, Zongjing Jin, Yanwei Zheng�, Dongxiao Yu, and Tian Lan

Abstract: Most blockchain systems currently adopt resource-consuming protocols to achieve consensus between

miners; for example, the Proof-of-Work (PoW) and Practical Byzantine Fault Tolerant (PBFT) schemes, which have a

high consumption of computing/communication resources and usually require reliable communications with bounded

delay. However, these protocols may be unsuitable for Internet of Things (IoT) networks because the IoT devices

are usually lightweight, battery-operated, and deployed in an unreliable wireless environment. Therefore, this paper

studies an efficient consensus protocol for blockchain in IoT networks via reinforcement learning. Specifically, the

consensus protocol in this work is designed on the basis of the Proof-of-Communication (PoC) scheme directly in

a single-hop wireless network with unreliable communications. A distributed MultiAgent Reinforcement Learning

(MARL) algorithm is proposed to improve the efficiency and fairness of consensus for miners in the blockchain

system. In this algorithm, each agent uses a matrix to depict the efficiency and fairness of the recent consensus and

tunes its actions and rewards carefully in an actor-critic framework to seek effective performance. Empirical results

from the simulation show that the fairness of consensus in the proposed algorithm is guaranteed, and the efficiency

nearly reaches a centralized optimal solution.

Key words: consensus in blockchain; Proof-of-Communication (PoC); MultiAgent Reinforcement Learning (MARL);

Internet of Things (IoT) networks

1 Introduction

The past decades have witnessed rapid development and
wide deployment of Internet of Things (IoT) networks
in various scenarios, such as automated industrial
systems[1], smart home applications[2], and autonomous
driving services[3]. By contrast, the massive and heteroid
devices in IoT networks take additional challenges for

�Yifei Zou, Zongjing Jin, Yanwei Zheng, and Dongxiao Yu are
with the Institute of Intelligent Computing, School of Computer
Science and Technology, Shandong University, Qingdao
266237, China. E-mail: yfzou@sdu.edu.cn; 202015073
@mail.sdu.edu.cn; zhengyw@sdu.edu.cn; dxyu@sdu.edu.cn;
� Tian Lan is with the Department of Electrical and Computer

Engineering, George Washington University, Washington, DC
20052, USA. E-mail: tlan@gwu.edu.
�To whom correspondence should be addressed.

Manuscript received: 2022-07-22; revised: 2022-08-29;
accepted: 2022-10-04

these devices to reach valid agreements efficiently. To
solve this problem, the blockchain has been considered
an important technique to maintain trust and secure
the environment in a decentralized IoT network[4–7].
Specifically, the devices in blockchain reach valid
agreements periodically via the consensus protocol.
The agreements achieved by the devices are then
stored in the distributed ledgers on the chain structure.
Specifically, the response time and the security of high-
level applications provided by the blockchain system are
highly determined by the efficiency and reliability of
the consensus protocol, and the distributed ledgers on
the chain prevent tampering with the agreements. Thus,
an efficient consensus protocol for blockchain in IoT
networks is always preferred.

Various protocols have been proposed due to
the importance of a fast and reliable consensus
protocol in the blockchain. These protocols can

1010 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

be mainly divided into two groups according
to their communication models. Assuming that
reliable communications exist between each pair
of devices, a series of protocols are proposed to
support the complex applications in reality, such as
Proof-of-Work (PoW)[8, 9], Proof-of-Activity (PoA)[10],
Practical Byzantine Fault Tolerance (PBFT)[11], and
HotStuff[12]. These famous protocols effectively support
their high-level applications. However, their high
resource consumption and requirement for reliable
communications have become the largest obstacles to
implementing these protocols in IoT networks because
most of the devices in IoT networks are lightweight,
battery-operated and communicate via an unreliable
wireless channel environment. Another group of works
is specifically designed for lightweight devices in
IoT with an unreliable communication model. For
example, in Refs. [13–16], miners achieve the consensus
with a Proof-of-Communication (PoC) scheme based
on the physical interference communication model.
Specifically, after considering the collision, interference,
and failure in the wireless channel, the devices in
Refs. [13, 14] adapt their transmission probability
by statistically randomized algorithms and the tree
structures are built in Refs. [15, 16], both providing
reliable communications between devices. A PoC
scheme is then adopted by devices to achieve the
consensus. However, the statistically randomized
algorithms in Refs. [13, 14] only approach the optimal
solution with a constant factor, and the tree constructions
in Refs. [15, 16] increase the time complexity for a
consensus. An efficient consensus protocol is designed in
this paper for blockchain in an unreliable communication
model.

Notably, optimizing the efficiency of consensus
protocol is difficult, especially in a distributed wireless
network, because the consensus is a global state in
which all devices agree on the same decision/opinion.
By contrast, only local knowledge can be used for
each device to reach the global agreement, and the
communications between devices are unreliable due
to the open access wireless channel. The previously
distributed algorithms clarify the direct realization of the
consensus in an unreliable wireless network. However,
their performance still approximates the optimal solution
with some important factors. For example, a two-round
leader election phase is proposed in Ref. [13] to elect a
leader for making the agreement. As proven in Ref. [13],
the two-round leader election is only successful with a

probability of 1=16. Thus, the algorithm in Ref. [13]
takes 32 rounds in expectation to achieve a consensus,
and this result is far from the optimal solution in
which the consensus can be achieved in each round of
communications.

Different from the previous works, which use
statistical and randomized algorithms to achieve
consensus, a MultiAgent Reinforcement Learning
(MARL) scheme is employed in this paper to optimize
the usage of the wireless channel for leader election,
and the elected leader is allowed to make the consensus.
A well-trained reinforcement learning model can have
a better performance in choosing the approximate
actions than the randomized algorithm, but the proposed
algorithm has higher efficiency in achieving the
consensus than that in Ref. [13]. Moreover, the proposed
MARL algorithm is a distributed one deployed in each
of the devices. An agent is used to indicate the MARL
algorithm in each of the devices. Different from the
previous MARL works, in most of which multiple agents
either compete or cooperate with each other for the final
reward, the multiple agents in the current work have the
competition and cooperation relationship simultaneously
for a successful leader election. To handle this complex
case, each agent in our algorithm uses a matrix to
depict the efficiency and fairness of the recent leader
election and tunes its reward carefully according to its
matrix and action in the last time step. The actor-critic
framework from Refs. [17–19] is also adopted in the
MARL algorithm, which enhances the efficiency and
accuracy of the algorithm. The contribution of this paper
is summarized in the following.

A lightweight consensus protocol is proposed in this
paper for blockchain in IoT networks via reinforcement
learning, demonstrating an almost optimal efficiency.
Different from the famous PoW and Proof of Stake
(PoS) schemes based on reliable communications,
the introduced protocol has minimal requirements for
computing and storage resources to achieve consensus.
Additionally, an MARL scheme under the actor-critic
framework is proposed to help devices choose the
most approximate actions when achieving consensus.
Numerical results from the simulation show that the
efficiency of the consensus protocol nearly reaches the
optimal solution.

The authors of this study believe that the closest effort
to their work in recent years is Refs. [13–16], which
are all committed to providing a lightweight consensus
algorithm suitable for decentralized IoT application

Yifei Zou et al.: Optimized Consensus for Blockchain in Internet of Things Networks via Reinforcement Learning 1011

scenarios. Compared with previous work, the current
study has a considerable advantage in channel utilization
efficiency when combined with reinforcement learning.
Therefore, the authors believe that this work provides
a novel perspective and option for the selection of
consensus algorithms for the large-scale application of
blockchain technology in IoT scenarios in the future.

Roadmap. The rest of this paper is organized as
follows. Section 2 presents the related work. Section 3
introduces the specific definition of the network model
and problem definition. Section 4 provides the algorithm
description. Section 5 presents an extensive simulation
to evaluate the performance of the proposed algorithm.
Section 6 concludes this paper.

2 Related Work

As mentioned above, the development of consensus
protocols in blockchain in recent years can be
divided into two groups. The first one considers the
satisfaction of the complex demands of reality based on
reliable device-to-device communication assumptions.
The aforementioned protocols usually have a high
consumption of computing or storage resources and
numerous communications to ensure the security of
consensus and priority of devices. For example, the PoW
in Refs. [8, 9], the Proof of Space in Ref. [20], the PoA in
Ref. [10], and the Proof of Reputation in Ref. [21] are all
based on reliable communication assumptions and have
high requirements for computing/storage/bandwidth
resources. This group of consensus protocols is
unsuitable for IoT networks because the IoT devices
are usually lightweight, battery-operated, and deployed
in an unreliable wireless environment. The second
group of consensus protocols, including Refs. [13–
16], are specifically designed for consensus under an
unreliable communication environment. Specifically,
the distributed protocols are proposed in Refs. [13,
14] for devices to achieve the consensus in single-
hop wireless networks with O.logn/ time complexity.
The core idea of the above works is a randomized
leader election algorithm, which ensures fairness by
allowing nodes to compete for the leader with the same
transmission probability. However, the randomization in
the leader election algorithm also reduces the efficiency
of the consensus. Other approaches to consensus for
blockchain in multihop wireless networks are given in
Refs. [15, 16]. The algorithms in Refs. [15, 16] first
build some special tree structures based on the physical
interference model. The consensus can then be made

within O.logn/ and O.n log� n/ time steps. However,
the time used for the tree construction is non-negligible.
Similar to the settings of Refs. [13, 14], the current work
considers the consensus for blockchain in a single-hop
wireless network with unreliable communications. The
largest difference is that the MARL method is used in
the proposed algorithm to help nodes choose the most
appropriate rather than the randomized leader algorithms
in Refs. [13, 14]. Thus, the performance of the algorithm
can be optimized.

The related literature regarding the reinforcement
learning techniques used in this study is provided in
the following. The well-known early works regarding
MARL include independent Q-learning in Ref. [22],
value decomposition networks in Ref. [23], and QMIX in
Ref. [24]. The studies on the MARL later extended into
several directions according to their different training
models and relationship settings. A comprehensive
survey for MARL in recent years can be found in
Ref. [25].

According to their training models, the studies
on MARL can be divided into two categories: the
centralized one, which relies on a centralized server
to merge the learning results (e.g., the COunterfactual
Multi-Agent (COMA) policy gradients in Ref. [26]
and Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) in Ref. [27]); and the distributed one, in
which the single-agent reinforcement learning scheme
is deployed on each device[28, 29]. According to the
relationship between multiple agents in reinforcement
learning, the works of MARL can also be divided
into three groups: the fully cooperative MARL[30, 31],
the fully competitive MARL[32, 33], and the mixed
cooperative and competitive MARL[34–36]. Specifically,
in the fully cooperative learning mode, the interests,
rewards, and goals of agents are the same, which is
friendly for designing efficient MARL algorithms. The
cooperative MARL is also termed team Markov games
in Refs. [37–39]. For the smart agents in the fully
competitive learning mode, the gain of one party is the
loss of another party. Thus, the key issue lies in reaching
the balance between agents and maximizing the final
global reward. Some typical works include Ref. [40]. In
the mixed setting of cooperation and competition[41–43],
the agent is divided into multiple groups. The agents in
the same group have the same reward and will cooperate.
A competitive relationship exists between agents in
different groups because the rewards of two different
groups are negatively correlated.

1012 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

The centralized training model is generally more
accurate than the previous one due to the availability of
global information. Meanwhile, the distributed training
model is suitable for IoT networks. Compared with
the fully cooperative and fully competitive MARL, the
mixed setting of cooperation and competition is complex
but has a high potential to solve some difficult problems.
The proposed MARL in this paper is a distributed one
with a mixed setting to optimize the consensus for
blockchain in IoT networks. Additionally, the mixture
of competition and cooperation among agents in this
work is more complex than the previous ones because
each pair of nodes has a competition and cooperation
relationship with each other, which also complicates the
design of the proposed MARL algorithm.

3 Model and Problem Definition

3.1 Network and communication model

A single-hop network model, in which n nodes are
arbitrarily deployed in a two-dimensional Euclidean
space, is considered. All nodes initially wake up
with a synchronized clock, and their communications
are the roundly based half-duplex mode. Specifically,
the time in the network is split into synchronization
rounds, and each split time is sufficient for nodes
to transmit or receive a signal. At the start of every
round, every node in the network will opt to send
messages or listen to the channel to receive a signal.
However, these nodes cannot perform both because
their transceivers are half-duplex. For a wireless signal
from its transmitter u to its receiver v�, the Signal to
Interference plus Noise Ratio (SINR) model in this
work is a typical physical interference model used to
describe simultaneous message reception, interference,
and competition among nodes. Graph models to
describe network communication may ignore some
physical characteristics in the process of information
dissemination. Using a graphical model can simplify
the communication model and facilitate the discussion
and analysis of the problem. However, an information
transfer model that is close to the real world will increase
the value of the current work for practical applications.
Compared with the graph-based models, the SINR model
in this paper is realistic in describing global interference
and signal reception in the physical world, which has
been extensively considered in Refs. [13–16]. The SINR

�Who transmits/receives a signal is termed as the transmitter/receiver
for short.

model is comprehensively described in the following:

Signal.v/ D
X
i2I

Pi � d.i; v/
��
CN;

SINR.u; v/ D
Pu � d.u; v/

��P
x2Infug Px � d.x; v/

�� CN
:

In the above SINR equations, the strength of the signal
received by v is marked as Signal.v/. SINR.u; v/ is
the SINR of the signal to receiver v from transmitter
u. Px is the transmission power of node x. d.x; v/ is
the Euclidean distance between nodes x and v. i is an
agent and I is defined as the set of transmitters in the
current round. � 2 .2; 6� is the parameter for path loss.
N is the ambient noise. � and N are determined by the
environment.

When SINR.u; v/ > �, the receiver v can decode
the signal from u. � is a threshold determined by
hardware and is typically larger than 1. Compared with
the graph-based interference model, the SINR model
is considerably realistic and accurate in describing the
global accumulated interference and the reception of
signals.

Every node is assumed to have a uniform transmission
power P and transmission range R to formulate the
single-hop wireless environment. All nodes are within
the transmission range of each other and contain their
transmission power P > N�R� .

3.2 Problem definition

The transactions between nodes in a blockchain system
occur due to some real-life activities. The nodes
must periodically achieve a consensus to ensure the
security and privacy of the transactions in a distributed
framework. Specifically, each period will have a block
containing all the transactions that occurred. All nodes
should then reach a consensus on this block; that is,
add this block on the blockchain if all the transactions
in this block are valid or discard this block otherwise.
Thus, the characteristics of the consensus in a blockchain
directly determine the efficiency and security of the
services based on the blockchain system. Similar to
the characteristics of the classical consensus problem
defined in Ref. [44], the consensus in blockchain is
defined with the following characteristics to ensure
that all nodes can quickly reach an agreement for the
transactions that occur in the blockchain system:

(1) Termination. Each node makes the decision in
finite time steps.

(2) Validity. A block will be added to the blockchain
by all nodes if and only if all its transactions are valid.

Yifei Zou et al.: Optimized Consensus for Blockchain in Internet of Things Networks via Reinforcement Learning 1013

(3) Agreement. All nodes will have the same decision
on whether to accept or abandon the new block.

Knowledge and capability of the nodes: Different
from the previous works, the consensus process in
blockchain is optimized in this study with an MARL
algorithm. Thus, each node is assumed to have a unique
ID, a lightweight computing and storage unit, and a
half-duplex transceiver for transmitting and receiving
messages. Additionally, the physical carrier sensing
function is required in the transceiver, which helps the
node determine the usage of the channel.

4 Algorithm Description

4.1 Framework of the consensus protocol

The four-stage consensus framework has been widely
utilized in previous work to reach a consensus within
the blockchain system. The current study also considers
the problem under such a framework. The following
is an elaborate description of the four-stage consensus
framework.

(1) Leader Election (LE) stage. In this stage, a
leader is elected from all the nodes within the blockchain
system.

(2) Block Proposal (BP) stage. The elected leader
proposes a block containing the transaction records
and relevant information regarding the previous block
within the network. The newly generated block is then
propagated to all the other nodes within the blockchain
system.

(3) Block Validation (BV) stage. Once the block is
received from the leader, other nodes will validate the
content of the block and return their confirmation (i.e.,
agree or disagree with the proposed block) to the leader.

(4) Chain Updating (CU) stage. All nodes,
including the leader, reach the same agreement on
whether the proposed block should be added to the main
chain.

The proposed algorithm is also based on the
framework of the four-stage consensus. Specifically,
the designed reinforcement learning algorithm ensures
that in the LE stage, only one node is definitely elected as
the leader and others know the elected result. A detailed
description is provided in the next subsection. In the BP
stage, the leader proposes a block, and all other nodes
listen to receive the block. Only one node broadcast is
available. Thus, the SINR equation indicates that the
block from the leader can be received by all listening
nodes. In the BV stage, the leader listens, and the other

nodes will transmit with power P if it does not agree
on the proposed block. The leader can sense a busy
channel� with its physical carrier sensing function when
some nodes disagree on the proposed block due to the
accumulative feature of wireless signals. Finally, the
leader broadcasts the state of the sensed channel in
the BV stage, and all nodes make the final decision
according to the state of the sensed channel in the BV
stage. Thus, if the sensed channel is busy in the BV
stage, then all nodes in the CU stage will discard this
block. Otherwise, this block will be added to the main
chain.

Notably, the famous PoW in Ref. [8], namely the
wChain in Ref. [14] and the BLOWN in Ref. [16], are
all based on such a scheme. The difference among
them is as follows: in PoW, the leader is elected by
solving a puzzle; in wChain, the leader is the root
node of its tree structure; in BLOWN, the leader is
elected with a statistically randomized algorithm. The
difference between the proposed algorithm and the
aforementioned is that the leader in the introduced
algorithm is elected by a well-designed reinforcement
learning scheme, which has nearly optimal efficiency.
The following subsection provides a detailed description
of the MARL LE algorithm.

4.2 Multiagent reinforcement learning leader
election algorithm

The proposed algorithm is introduced in the following
three parts. First, the definitions and descriptions of
the necessary elements required by the algorithm
are introduced. Second, the above definitions and
descriptions are used to introduce the detailed derivation
process of the proposed algorithm. Last, the overall
description of the algorithm and the overall structure of
the neural network are provided.

4.2.1 Definitions and descriptions of necessary
elements of the algorithm

When designing a reinforcement learning scheme, the
following four parts should generally be carefully
considered: the state space S , the action space A, the
reward R, and the transition probability Pss0 between
the current state and the next state. In the MARL
algorithm, n agents are deployed on each of the nodes.
In each LE stage t , an agent i takes an action ait in the
current state sit , immediately receives the reward r i and

�A channel is busy when some nodes are transmitting; otherwise, we say the
channel is idle.

1014 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

comes to the new state sitC1, and iteratively updates its
transition probability Pss0 to expect a high reward return
U it (i.e., the cumulative reward). Specifically, in the
problem, each agent i takes the channel utilization index
as its state sit . The channel utilization index defined
below can fully and effectively measure the fairness
of channel utilization of each agent. Thus, taking the
channel utilization index as the state of an agent can
enable the agent to obtain additional completed channel
information and choose additional appropriate actions.
Each agent takes an action ait according to the state of
this round; that is, an agent chooses to transmit messages
or listen to the channel in the current round t . Thus, the
new state of the channel will be determined when all
agents complete their actions synchronously. During
this time, all agents have knowledge of the following:
whether the LE of this round is successful; if successful,
which agent is elected as the leader. After knowing
this information, each agent can update its new state
sitC1 locally and obtain the corresponding reward and
punishment r i . Each agent can then adjust its policy
according to the reward and punishment obtained. Thus,
designing appropriate reward functions can help each
agent gradually avoid all the wrong decisions and learn
good decisions after iterative training steps to determine
the optimal policy.

Terms other than state transition probability
mentioned above will be defined step-by-step for the
problem in the following sections. Most reinforcement
learning scenarios preset the state transition to
be random. However, in the current problem, the
determination of the new state is jointly determined by
all agents, which is no longer random (as mentioned
above, the determination of the new state of the channel
is jointly determined by all agents after the synchronized
actions), thereby simplifying the problem.

Leader election: Each LE requires the main and
auxiliary rounds. In the main round, each agent chooses
to send a message according to the probability learned
by itself (this type of agent is named B1) or listen to the
channel (this type of agent is named B2). If each agent
B2 has successfully decoded information in the first
round, then this agent will remain silent in the auxiliary
round to inform the success of agent B1 that chose to
send a message to the LE in the main round. Each agent
B1 listens in the auxiliary round; if the sensed channel
is idle, then the agent has been successfully elected as
the leader. In this case, the main round is defined as a
successful round ts . Otherwise, in the auxiliary round, if

agent B2 cannot successfully decode the message in the
main time slot due to the transmission of multiple nodes
or the silence of all nodes, then the agent will choose to
send a message in the auxiliary round. In this case, agent
B1 senses a busy channel, and the main round is defined
as a failure for the LE. The auxiliary round is used for
nodes to verify the usage of the channel in the main
round. The following mainly discusses the situation in
the main round.

States: In each round t , the channel utilization index
si .ts/ of each agent i is defined as the state si .t/ of each
agent, that is, si .t/ D si .ts/. The channel utilization
index si .ts/ describes how many successful rounds agent
i has experienced since its successful election as the
leader last time, specified in the following:

si .tsC1/D

(
si .ts/C1; if i is not elected as the leader;

0; if i is elected as the leader
(1)

Notably, this index is updated only when an agent is
elected as the leader in this round (successful round),
where i represents the ID of the node and ts represents
the successful rounds of electing leaders during the
training process. The index update is shown in the
above formula. For example, if agent i is elected as
the leader in this successful round, then its index will
be reset to zero while that of other agents is increased
by one. This formula indicates that the state transition
is deterministic, which simplifies the complexity of the
learning environment and facilitates the easy training of
the neural network.

The average index is derived from above: Ns.ts/ DPn
iD1 s

i .ts/=n. For each agent i , a global index table is
maintained locally to calculate Ns.ts/. For example, Fig. 1
shows the situation where only node 3 is elected as the
leader.

Actions: In each round t , each agent i has an
independent probability of pi to transmit a message or
an independent probability of 1�pi to listen. The action
of an agent i in round t is denoted as Ai .t/,

Fig. 1 Example of how the index changes.

Yifei Zou et al.: Optimized Consensus for Blockchain in Internet of Things Networks via Reinforcement Learning 1015

Ai .t/ D

(
0; if the node does not send a message;

1; if the node sends a message.
Reward: Immediate reward is the value that the

environment feeds back to the agent. The reward of agent
i and the observed value of the reward are recorded as
variables Ri and r i , respectively. The discount return of
agent i is the weighted sum of its reward,
U it D R

i
t C �R

i
tC1 C

2
�RitC2 C

3
�RitC3 C � � �

where 2 Œ0; 1� is the discount factor. From a
mathematical viewpoint, an infinite sum of rewards may
not converge to a finite value and is difficult to address
in equations. However, the infinite sum will converge
with a discount factor and under reasonable conditions.

Reward shaping: In the setting of multiagent
cooperation, the reward design is generally R1D

R2 D � � �D Rn. In the case of multiagent competition,
the reward design is R1 / �R2. However, the problem
lies in a mixed task with cooperation and competition:
all agents must not only cooperate in electing a leader
but must also compete for the leadership of each round.
Specifically, after all agents complete their action in each
round, only two cases remain in the channel, which is
denoted as C.t/,

C.t/D

(
1; if only one node transmits in main round;

0; otherwise
(2)

If an agent’s A.t/ D 1 at time t , its index si .ts/ is
abbreviated as sa, and each agent can learn sa from its
updated index table. Thus, the reward is designed as
follows:

r i .t/D

8̂̂̂̂
<̂
ˆ̂̂:
1; C.t/ D 1 and sa > Ns.ts/I

�1; C.t/D1; si .ts/< Ns.ts/; and Ai .t/D1I

�1; C.t/D1; si .ts/> Ns.ts/; and Ai .t/D0I

0; otherwise
(3)

As shown in Eq. (3), for each agent i in the main round
t with C.t/ D 1, which indicates that t is a successful
round for LE. At this time, if the index of the elected
leader is no smaller than the average index, that is, sa >
Ns.ts/, then this index is a good result because all agents
cooperate to elect a leader and consider the fairness of
the index. Therefore, all agents will be rewarded with 1.
However, if the index of the elected leader is less than
the average index, that is, sa < Ns.ts/, then the leader in
the current round is believed to be elected too frequently
(i.e., .si .ts/ < Ns.ts/ and Ai .t/ D 1/). Therefore, this
leader is given a punishment by setting the reward as

�1. Additionally, the agents who should have competed
for the leader but did not, that is, .si .ts/ > Ns.ts/ and
Ai .t/ D 0/, are punished. The two aforementioned
situations are considered the embodiment of the essence
of the problem as a mixed task type of competition and
cooperation. In other general situations, the agents are
neither good nor bad; thus, they are neither rewarded nor
punished.
4.2.2 Derivation process of the algorithm
The policy function must also be defined to construct
the mapping of .� W S ! A/ to achieve the maximum
return,

�.a j s/ ,M.A D a j S D s/:

The input of the policy function � is stated as s, and the
output is a probability value of action A between 0 and 1.
Whenever a state s is observed, the policy function is
used to calculate the probability of each action. Specially,
M.A D a j S D s/ is the probability that the agent takes
an action a when it is in the state s. Random sampling is
then given to obtain action A, and the agent will execute
action A.

The most effective method to obtain such a policy
function is to use neural network �.a j sIθ/ to
approximate the policy function �.a j s/. The neural
network �.a j sIθ/ is called a policy network. θ

represents the parameters of the neural network and
is randomly initialized at the beginning. The collected
states, actions, and rewards are then used to update θ.
A policy network means approximating policy function
with the neural network. Each agent can have its policy
network. The current problem is discrete control, and
the policy network of each agent i is denoted as

Of D � .� j sIθi / :

The input of the policy network is state s, and the
output is a vector Of . The dimension of vector Of is
the size of the action space

ˇ̌
Ai
ˇ̌
. Each element of

Of represents the probability of action. The elements
of Of are all positive real numbers and add up to 1.
Random sampling according to Of is performed during
decision making to obtain action ai , and agent i executes
this action. For a typical Reinforcement Learning (RL)
problem, the following two indicators are also necessary
to solve the RL problem. The first indicator is the action
value function (Q-value function), which represents
the cumulative expected reward Rt after taking action
at from state st and following the policy � . The action
value function of the agent is recorded as

1016 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

Q� .st ; at /DE ŒRt j st ; at �DE

"
1X
iD0

 irtCi j st ; at

#
:

The second indicator is the state value function,
denoted as V�.S/, which is used repeatedly in policy
learning methods. This indicator is the expectation of the
action value function Q�.S; A/ regarding the current
policy � . The state value function of the agent is as
follows:

V� .st / D EAt��.�jst / ŒQ� .st ; At /� DX
a2A

� .a j st / �Q� .st ; a/ (4)

If a policy is good, then the mean value of V�.S/
should be large for all states S . Therefore, the objective
function is defined as

J.θ/ D ES ŒV�.S/� :

This objective function excludes the factor of state
S and only relies on the parameter θ of the policy
network � . A superior policy indicates a large J.θ/.
Updating the parameter θ of the policy network aims
to gradually increase the objective function J.θ/, thus
strengthening the policy network. This gradient of the
objective function is called the policy gradient, which
can be written in the form of the following theorem.
The subsequent derivation of the algorithm will be
based on this theorem. The policy gradient theorem was
independently proposed by Marbach and Tsitsiklis in
1999[45] and Sutton et al. in 2000[18],
@J.θ/

@θ
D

ES

�
EA��.�jS Iθ/

�
@ ln�.A j S Iθ/

@θ
�Q�.S; A/

��
(5)

Policy learning can then be expressed as an
optimization problem: maxθ

˚
J.θ/ , ES ŒV�.S/�

	
.

The simplest algorithm to solve this maximization
problem is gradient ascent: θ θCˇ � rθJ.θ/, where
ˇ is the learning rate, which must be manually adjusted,
and rθJ.θ/ is the policy gradient. According to the
policy gradient in Eq. ((5)),
rθJ.θ/ D

ES
�
EA��.jS Iθ/ ŒQ�.S; A/ � rθ ln�.A j S Iθ/�

�
(6)

Analytically determining this expectation is
impossible because the probability density function of
state S is unknown. However, the expectation in the
policy gradient can be approximated through the Monte
Carlo approximation of expectation[46]. Monte Carlo
is an umbrella term for a broad class of randomized

algorithms that use random samples to estimate true
values. One state s is observed from the environment
at a time corresponding to the observed value of the
random variable S . According to the current policy
network (policy network parameters must be the latest),
an action is then randomly sampled: a � �.� j sIθ/,
and the stochastic gradient is calculated as follows:

g.s; aIθ/ , Q�.s; a/ � rθ ln�.a j sIθ/ (7)

g.s; aIθ/ is the unbiased estimate of policy gradient
rθJ.θ/,

rθJ.θ/ D ES
�
EA��.�jS Iθ/Œg.S; AIθ/�

�
:

Applying the above conclusions, stochastic gradient
ascent can be performed to update θ. Therefore, the
objective function J.θ/ grows step by step: θ

θ C ˇ � g.s; aIθ/. However, this method still fails,
and g.s; aIθ/ cannot be calculated because the action
value function Q�.s; a/ is unknown. In RL literature,
Q�.s; a/ is approximated by two methods: one approach
is REINFORCE proposed by Williams in 1992[47],
which approximates Q�.s; a/ with the return u of the
actual observation; the other approach is actor-critic,
which uses a neural network q.s; aI!!!/ to approximate
Q�.s; a/, where !!! represents the parameters of the
neural network and is randomly initialized at the
beginning. The collected states, actions, and rewards are
then used to update !!!. The second solution is adopted
in the current study. Next, the actor-critic method is
comprehensively introduced. The policy network �.a j
sIθ/ is equivalent to an actor, which makes action a
based on state s. Value network q.s; aI!!!/ is equivalent
to the critic, who scores the performance of the actor and
quantifies how good or bad action a is in state s. The
relationship between the policy network (actor) and the
value network (critic) is shown below.

Instead of reward R, the objective function of policy
learning J.θ/ lies in the expectation of return U . The
current reward R is still meaningless to the policy
network. Training the policy network (actor) requires the
return U , which is the weighted sum of all the rewards
in the future. The value network (critic) can estimate the
expectation of return U and thus help train the policy
network (actor).

4.2.3 Specific description of the algorithm and the
overall network structure

Training of the policy network (actor): The policy
network (actor) wants to improve his acting, but the actor
does not know what kind of performance is effective;

Yifei Zou et al.: Optimized Consensus for Blockchain in Internet of Things Networks via Reinforcement Learning 1017

thus, he needs the help of the value network (critic).
After the actor makes an action a, the critic will give a
score Oq , q.s; aI!!!/ and provide the score as feedback
to the actor to help the actor make improvements. Using
the current state s and the critic’s score Oq, the actor
calculates the approximate policy gradient and then
updates his parameter θ. Thus, the performance of the
actor is praised by the critic and the score Oq increases.
The basic idea of training the policy network is to
update the parameter θ with the approximation of policy
gradient rθJ.θ/. The unbiased estimator of the policy
gradient was previously derived in Eq. ((7)). Value
network q.s; aI!!!/ is the approximation of the action
value function Q�.s; a/. Therefore, Q� in Eq. ((7))
above is replaced by the value network to obtain the
approximate policy gradient,

Og.s; aIθ/ , q.s; aI!!!/„ ƒ‚ …
critic’s rating

�rθ ln�.a j sIθ/ (8)

Finally, the parameters of the policy network are
updated by gradient ascent: θ θ C ˇ � Og.s; aIθ/.
Training of the value network (critic): The above
analysis reveals that the above method of training policy
network does not really contribute to the improvement
of actors but only increases their suitability for the
critic. Therefore, the level of the critic is also crucial,
and the level of the actors can be truly improved only
when the critic’s score Oq truly reflects the value of
the action Q� . Initially, the value network parameter
!!! is random. The State-Action-Reward-State’-Action’
(SARSA) algorithm originated in Ref. [48] can be used
to update!!! and improve the level of the critic. Each time
a reward r is observed in the environment, r is regarded
as truth and used to calibrate the ratings of the critic.

In the SARSA algorithm, the value network at time t
outputs:

Oqt D q .st ; at I!!!/ ;

which is an estimate of the action value function. At
time are actually observed; therefore, the Temporal-
Difference (TD) target can be calculated as follows:

Oyt , rt C � q .stC1; atC1I!!!/ ;

which is also an estimate of the action value function
Q� .st ; at /. Oyt is partly based on the actually observed
reward rt ; thus, Oyt is believed to be closer to
the truth than q .st ; at I!!!/. Therefore, Oyt is fixed,
and q .st ; at I!!!/ is encouraged to approach Oyt . The
SARSA algorithm specifically updates the value network
parameter !!! in this way. The loss function is defined as
follows:

L.!!!/ ,
1

2
Œq .st ; at I!!!/ � Oyt �

2 :

Let Oqt , q .st ; at I!!!/, the gradient of the loss function
is

r!!!L.!!!/ D . Oqt � Oyt /„ ƒ‚ …
TD error ıt

�r!!!q .st ; at I!!!/ :

!!! is updated with gradient descent,
!!! !!! � ˛ � r!!!L.!!!/:

Updating !!! in this way makes q .st ; at I!!!/ close
to Oyt . SARSA can be understood this way: the
observed reward rt is used to calibrate the critic’s score
q .st ; at I!!!/. Finally, the flow chart and the pseudocode
of the algorithm are given in Fig. 2 and Algorithm 1,
respectively.

5 Simulation Result

The experimental results from the simulation are
presented in this section to evaluate the efficiency of
the proposed algorithm in achieving the consensus.
As mentioned in the framework of the consensus
protocol, the LE process directly impacts the efficiency
of consensus. Once a leader is elected, completing the
BP, BC, and CU stages takes three additional rounds.
Thus, in the following, the efficiency of the LE algorithm
is observed in each episode, which contains 1000 main
and auxiliary rounds.

Parameter setting. This simulation has n agents
randomly and uniformly distributed in a circular area
with a radius of R D 100m, and the minimum distance
between agents is 1 m. Ambient noise N is normalized
to 1 dB, the transmission range of the equipment is set
to 200 m, and the maximum transmission power P D
2R�N�. If unspecified, then all agent parameters are set
as follows: policy network learning rate is set to 0.0003,
value network learning rate to 0.0005, D 0:9, and
Tmax D 1000. All results are provided on TensorFlow
1:8 and Python 3:6 platforms. All simulation results
are generated on a computer configured with Intel Core
i7-8565U@1.80 GHz.

Simulated results. First, as shown in Fig. 3, the
convergence of the Deep Reinforcement Learning (DRL)
algorithm with different numbers of agents is evaluated
using the variation of the total reward obtained from a
single agent in each episode during the training process.
The results reveal that the agent can always gradually
obtain the maximum total reward and converge after
sufficient episodes. With the increase in n, raising

1018 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

Fig. 2 Actor-critic framework of our MAAC algorithm.

Algorithm 1 MAAC algorithm
1: for i D 1; 2; : : : ; n do
2: Initialize parameters θi in the policy network
�i
�
� j si Iθi

�
and parameters wi in the value network

Oqi
�
si ; Qai Iwi

�
.

3: Initialize state (index) si .t/ D si .ts/ D 0 and the local
index table.

4: end for
5: for episode D 1; 2; : : : ; Emax do:
6: for t D 1; 2; : : : ; Tmax do:
7: for each agent i D 1; 2; : : : ; n do:
8: The policy network makes a decision based on the

channel state si
t at the current time t : ai

t � �i .� j si
t Iθ

i /.
Specifically, let the agent sample the action ai

t based on the
probability distribution of the current policy network output
and execute this action.

9: Obtain a new state si
tC1

(1) and a new reward r i
t

Eq. (3) from the current channel state. Make decisions based
on the policy network: Oai

tC1
� �i .� j si

tC1
Iθi /, but do not

let the agent perform the action Qai
tC1.

10: Let the value network score the policy network:
Oqi

t D q
i .si

t ; a
i
t I!!!

i / and Oqi
tC1
D qi .si

tC1
; Qai

tC1
I!!!i /.

11: Calculate TD target and TD error: Oyi
t D r

i
t C �

Oqi
tC1

and ıi
t D Oq

i
t � Oy

i
t .

12: Update value network: !!!i !!!i � ˛ � ıi
t �

r!!!i qi .si
t ; a

i
t I!!!

i /.
13: Update policy network: θi θi C ˇ � Oqi

t �

rθi ln�i .ai
t j s

i
t Iθ

i /.
14: end for
15: end for
16: end for

episodes (i.e., training time) facilitates the convergence
of total reward to the maximum value. This advantage
facilitates the easy deployment of the proposed algorithm
in large-scale distributed network scenarios without
degrading performance. Figure 3 demonstrates that
the proposed algorithm converges well, which directly
proves the “termination” property. Combined with the
four aforementioned stages of consensus that guarantee
“validity” and “agreement”, the proposed algorithm fits
well with the three properties of consensus algorithms.

Second, as shown in Fig. 4, the success rate (the ratio
of successful rounds to the total rounds) of the introduced
learning algorithm in each episode and that of the
previous randomized algorithm are compared[13]. The
results show that despite the randomized algorithm with
a stable success rate, the proposed learning algorithm
can outperform the stochastic algorithm after sufficient
training. Notably, the success rate after the algorithm
has sufficiently converged can reach almost 100%,
which is approximately 2:5 times larger than that of
the randomized algorithm. Moreover, the success rate of
the randomized algorithm decreases when n increases.
The success rate has been proven to decrease to the
lower bound of 1/e in Ref. [13] when n is infinite. By
contrast, the performance of the proposed algorithm is
insensitive to the increase in n. When n increases, only
the corresponding episode must be increased to reach a
100% success rate. Therefore, the efficiency of the

Yifei Zou et al.: Optimized Consensus for Blockchain in Internet of Things Networks via Reinforcement Learning 1019

(a) nD 3 (b) nD 5 (c) nD 8 (d) nD 10

Fig. 3 Total reward obtained from a single agent in each episode.

(a) nD 3 (b) nD 5 (c) nD 8 (d) nD 10

Fig. 4 Comparison of the success rate in each episode between the learning and randomized algorithms.

proposed algorithm on consensus is optimized.
Finally, as shown in Fig. 5, the number of times

that the agents are elected as the leader when the
proposed learning algorithm reaches the maximum
reward is compared with the counts of the randomized
algorithm in Ref. [13]. The results show that the
randomized algorithm only guarantees the fairness of

the probability. However, a considerable amount of
uncertainty will always remain in the actual situation
due to the randomization, which is illustrated by the
slightly equal blue bars in the figure. In the case of
convergence, the proposed algorithm can finally ensure
that the number of times each agent is elected as the
leader is exactly the same, as shown by the absolute

(a) nD 3 (b) nD 5

(c) nD 8 (d) nD 10

Fig. 5 Comparison of the number of times that each agent is elected between the learning algorithm and the randomized
algorithm.

1020 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

equality of the red bars in the figure, thus ensuring actual
fairness.

The experimental results generally show that when our
algorithm is well trained to the final convergence, each
agent will be elected as the leader in turn, i.e., each agent
is determinately re-elected as a leader if it has elapsed
an interval of n � 1 successful rounds since it was last
elected as leader. Thus, the efficiency of the proposed
algorithm on consensus is optimal.

6 Conclusion

Different from the previous resource-consuming
protocols for consensus in blockchain, a lightweight
consensus protocol is designed in this paper for the
blockchain system in a single-hop wireless network. A
distributed MARL algorithm is designed to optimize the
efficiency of the protocol in achieving the consensus.
Numerical results from the simulation show that the
proposed protocol can improve the efficiency of the
consensus in blockchain by 250% compared with
previous work, demonstrating optimal efficiency. Future
work will extend to the multihop and multiple-channel
scenarios.

Acknowledgment

This work was partially supported by the National
Key Research and Development Program of China
(No. 2020YFB1005900), the National Natural Science
Foundation of China (Nos. 62102232, 62122042, and
61971269), and the Natural Science Foundation of
Shandong Province (No. ZR2021QF064).

References

[1] W. P. Wang, Z. R. Wang, Z. F. Zhou, H. X. Deng, W. L.
Zhao, C. Y. Wang, and Y. Z. Guo, Anomaly detection
of industrial control systems based on transfer learning,
Tsinghua Science and Technology, vol. 26, no. 6, pp. 821–
832, 2021.

[2] Z. N. Mohammad, F. Farha, A. O. M. Abuassba, S. K. Yang,
and F. Zhou, Access control and authorization in smart
homes: A survey, Tsinghua Science and Technology, vol.
26, no. 6, pp. 906–917, 2021.

[3] X. L. Xu, H. Y. Li, W. J. Xu, Z. J. Liu, L. Yao, and F.
Dai, Artificial intelligence for edge service optimization
in Internet of Vehicles: A survey, Tsinghua Science and
Technology, vol. 27, no. 2, pp. 270–287, 2022.

[4] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli,
and M. H. Rehmani, Applications of blockchains in the
internet of things: A comprehensive survey, IEEE Commun.
Surv. Tutorials, vol. 21, no. 2, pp. 1676–1717, 2019.

[5] K. Biswas and V. Muthukkumarasamy, Securing smart cities
using blockchain technology, in Proc. 18th Int. Conf. on

High Performance Computing and Communications; IEEE
14th Int. Conf. on Smart City; IEEE 2nd Int. Conf. on Data
Science and Systems, Sydney, Australia, 2016, pp. 1392–
1393.

[6] P. T. S. Liu, Medical record system using blockchain,
big data and tokenization, in Proc. 18th Int. Conf. on
Information and Communications Security, Singapore,
2016, pp. 254–261.

[7] X. Yue, H. J. Wang, D. W. Jin, M. Q. Li, and W. Jiang,
Healthcare data gateways: Found healthcare intelligence on
blockchain with novel privacy risk control, J . Med. Syst.,
vol. 40, no. 10, p. 218, 2016.

[8] N. Satoshi, Bitcoin: A peer-to-peer electronic cash system,
https://nakamotoinstitute.org/bitcoin/, 2008.

[9] B. Fisch, J. Bonnerau, N. Greco, and J. Benet, Scaling
proof-of-replication for filecoin mining, Technical
report, Stanford University, Palo Alto, CA, USA,
https://research.protocol.ai/publications/scaling-proof-of-
replication-for-filecoin-mining/, 2018.

[10] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, Proof
of activity: Extending bitcoin’s proof of work via proof of
stake, SIGMETRICS Perform. Eval. Rev., vol. 42, no. 3, pp.
34–37, 2014.

[11] M. Castro and B. Liskov, Practical Byzantine fault tolerance,
in Proc. 3rd Symp. on Operating Systems Design and
Implementation, New Orleans, LA, USA, 1999, pp. 173–
186.

[12] M. F. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, HotStuff: BFT consensus with linearity and
responsiveness, in Proc. 2019 ACM Symp. on Principles of
Distributed Computing, Toronto, Canada, 2019, pp. 347–
356.

[13] Y. F. Zou, M. H. Xu, J. G. Yu, F. Zhao, and X. Z. Cheng, A
fast consensus for permissioned wireless blockchains, IEEE
Internet Things J ., doi: 10.1109/JIOT.2021.3124022.

[14] M. H. Xu, C. C. Liu, Y. F. Zou, F. Zhao, J. G. Yu, and
X. Z. Cheng, wChain: A fast fault-tolerant blockchain
protocol for multihop wireless networks, IEEE Trans. Wirel.
Commun., vol. 20, no. 10, pp. 6915–6926, 2021.

[15] L. Yang, Y. F. Zou, M. H. Xu, Y. C. Xu, D. X. Yu, and X. Z.
Cheng, Distributed consensus for blockchains in internet-
of-things networks, Tsinghua Science and Technology, vol.
27, no. 5, pp. 817–831, 2022.

[16] M. H. Xu, F. Zhao, Y. F. Zou, C. C. Liu, X. Z. Cheng,
and F. Dressler, BLOWN: A blockchain protocol for single-
hop wireless networks under adversarial SINR, IEEE Trans.
Mob. Comput., doi: 10.1109/TMC.2022.3162117.

[17] R. S. Sutton, Temporal credit assignment in reinforcement
learning, PhD dissertation, Univ. Mass. Amherst, Amherst,
MA, USA, 1984.

[18] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,
Policy gradient methods for reinforcement learning with
function approximation, in Proc. 12th Int. Conf. on Neural
Information Processing Systems, Denver, CO, USA, 2000,

Yifei Zou et al.: Optimized Consensus for Blockchain in Internet of Things Networks via Reinforcement Learning 1021

pp. 1057–1063.
[19] A. G. Barto, R. S. Sutton, and C. W. Anderson, Neuronlike

adaptive elements that can solve difficult learning control
problems, IEEE Trans. Syst. Man Cybern., vol. SMC-13,
no. 5, pp. 834–846, 1983.

[20] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak,
Proofs of space, in Proc. 35th Annu. Cryptology Conf.,
Santa Barbara, CA, USA, 2015, pp. 585–605.

[21] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, Permacoin:
Repurposing bitcoin work for data preservation, in Proc.
2014 IEEE Symp. on Security and Privacy, Berkeley, CA,
USA, 2014, pp. 475–490.

[22] M. Tan, Multi-agent reinforcement learning: Independent
vs. cooperative agents, in Machine Learning Proceedings
1993. Amsterdam, the Netherlands: Elsevier, 1993, pp. 330–
337.

[23] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V.
Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z.
Leibo, K. Tuyls, et al., Value-decomposition networks for
cooperative multi-agent learning based on team reward,
in Proc. 17th Int. Conf. on Autonomous Agents and
MultiAgent Systems, Stockholm, Sweden, 2017, pp. 2085–
2087.

[24] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J.
N. Foerster, and S. Whiteson, QMIX: Monotonic value
function factorisation for deep multi-agent reinforcement
learning, in Proc. 35th Int. Conf. on Machine Learning,
Stockholmsmässan, Stockholm, Sweden, 2018, pp. 4292–
4301.

[25] K. Q. Zhang, Z. R. Yang, and T. Başar, Multi-agent
reinforcement learning: A selective overview of theories
and algorithms, in Handbook of Reinforcement Learning
and Control, K. G. Vamvoudakis, Y. Wan, F. L. Lewis, and
D. Cansever, eds. Cham, Germany: Springer, 2021, pp.
321–384.

[26] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S.
Whiteson, Counterfactual multi-agent policy gradients, in
Proc. 32nd AAAI Conf. on Artificial Intelligence, Palo Alto,
CA, USA, 2018, pp. 2974–2982.

[27] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I.
Mordatch, Multi-agent actor-critic for mixed cooperative-
competitive environments, in Proc. 31st Int. Conf. on
Neural Information Processing Systems, Long Beach, CA,
USA, 2017, pp. 6382–6393.

[28] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H.
S. Torr, P. Kohli, and S. Whiteson, Stabilising experience
replay for deep multi-agent reinforcement learning, in Proc.
34th Int. Conf. on Machine Learning, Sydney, Australia,
2017, pp. 1146–1155.

[29] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus,
J. Aru, J. Aru, and R. Vicente, Multiagent cooperation and
competition with deep reinforcement learning, PLoS One,
vol. 12, no. 4, p. e0172395, 2017.

[30] A. Lazaridou, A. Peysakhovich, and M. Baroni, Multi-agent
cooperation and the emergence of (natural) language, arXiv
preprint arXiv: 1612.07182, 2017.

[31] I. Mordatch and P. Abbeel, Emergence of grounded
compositional language in multi-agent populations, in Proc.
32nd AAAI Conf. on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conf. and
8th AAAI Symp. on Educational Advances in Artificial
Intelligence, New Orleans, LA, USA, 2018, p. 183.

[32] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and
I. Mordatch, Emergent complexity via multi-agent
competition, present at Proc. 6th Int. Conf. on Learning
Representations, Vancouver, Canada, 2018.

[33] M. Raghu, A. Irpan, J. Andreas, R. Kleinberg, Q. V. Le,
and J. M. Kleinberg, Can deep reinforcement learning solve
Erdos-Selfridge-spencer games? in Proc. 35th Int. Conf. on
Machine Learning, Stockholmsmässan, Sweden, 2018, pp.
4235–4243.

[34] J. Z. Leibo, V. Zambaldi, M. Lanctot, and J. Marecki, Multi-
agent reinforcement learning in sequential social dilemmas,
in Proc. 16th Conf. on Autonomous Agents and MultiAgent
Systems, São Paulo, Brazil, 2017, pp. 464–473.

[35] A. Lerer and A. Peysakhovich, Maintaining cooperation in
complex social dilemmas using deep reinforcement learning,
arXiv preprint arXiv: 1707.01068, 2018.

[36] J. Z. Leibo, J. Perolat, E. Hughes, S. Wheelwright, A. H.
Marblestone, E. Duéñez-Guzmán, P. Sunehag, I. Dunning,
and T. Graepel, Malthusian reinforcement learning, in Proc.
18th Int. Conf. on Autonomous Agents and MultiAgent
Systems, Montreal, Canada, 2019, pp. 1099–1107.

[37] Y. C. Ho, Team decision theory and information structures,
Proc. IEEE, vol. 68, no. 6, pp. 644–654, 1980.

[38] X. F. Wang and T. Sandholm, Reinforcement learning to
play an optimal Nash equilibrium in team Markov games,
in Proc. 15th Int. Conf. on Neural Information Processing
Systems, Cambridge, MA, USA, 2002, pp. 1603–1610.

[39] T. Yoshikawa, Decomposition of dynamic team decision
problems, IEEE Trans. Autom. Control, vol. 23, no. 4, pp.
627–632, 1978.

[40] M. L. Littman, Markov games as a framework for
multi-agent reinforcement learning, in Machine Learning
Proceedings 1994, W. W. Cohen and H. Hirshpp, eds.
Amsterdam, the Netherlands: Elsevier, 1994, pp. 157–163.

[41] J. L. Hu and M. P. Wellman, Nash q-learning for general-
sum stochastic games, J . Mach. Learn. Res., vol. 4, pp.
1039–1069, 2003.

[42] M. G. Lagoudakis and R. Parr, Learning in zero-sum team
Markov games using factored value functions, in Proc.
15th Int. Conf. on Neural Information Processing Systems,
Cambridge, MA, USA, 2002, pp. 1659–1666.

[43] M. L. Littman, Friend-or-foe Q-learning in general-sum
games, in Proc. 18th Int. Conf. on Machine Learning, San
Francisco, CA, USA, 2001, pp. 322–328.

[44] C. Dwork, N. Lynch, and L. Stockmeyer, Consensus in

1022 Tsinghua Science and Technology, December 2023, 28(6): 1009–1022

the presence of partial synchrony (Preliminary version), in
Proc. 3rd Annu. ACM Symp. on Principles of Distributed
Computing, Vancouver British Columbia, Canada, 1984, pp.
103–118.

[45] P. Marbach and J. N. Tsitsiklis, Simulation-based
optimization of Markov reward processes: Implementation
issues, in Proc. 38th IEEE Conf. on Decision and Control,
Phoenix, AZ, USA, 1999, pp. 1769–1774.

[46] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, 2nd ed. Cambridge, MA, USA: MIT Press,
2018.

[47] R. J. Williams, Simple statistical gradient-following
algorithms for connectionist reinforcement learning, Mach.
Learn., vol. 8, nos. 3&4, pp. 229–256, 1992.

[48] R. S. Sutton, Generalization in reinforcement learning:
Successful examples using sparse coarse coding, in Proc.
8th Int. Conf. on Neural Information Processing Systems,
Denver, CO, USA, 1995, pp. 1038–1044.

Yifei Zou received the BEng degree from
Wuhan University, China in 2016, and
the PhD degree from the University of
Hong Kong, China in 2020. He is currently
an assistant professor at the School
of Computer Science and Technology,
Shandong University, Qingdao, China. His
research interests include wireless networks,

ad hoc networks, and distributed computing.

Zongjing Jin received the BEng degree
from Shandong University, Qingdao, China
in 2020. He is currently a master student
at the School of Computer Science and
Technology, Shandong University, Qingdao,
China. His research interests include
wireless networks, distributed computing,
and deep reinforcement learning.

Yanwei Zheng received the PhD degree
in 2019 from Beihang University, Beijing,
China in 2019. He is currently an assistant
researcher at the School of Computer
Science and Technology, Shandong
University, Qingdao, China. His research
interests include object navigation and
computer vision.

Dongxiao Yu received the BS degree from
Shandong University, China in 2006, and
the PhD degree from the University of
Hong Kong, China in 2014. He became
an associate professor at the School
of Computer Science and Technology,
Huazhong University of Science and
Technology in 2016. He is currently a

professor at the School of Computer Science and Technology,
Shandong University. His research interests include wireless
networks, distributed computing, and graph algorithms.

Tian Lan received the BEng degree from
Tsinghua University, China in 2003, the
MEng degree from the University of
Toronto, Canada in 2005, and the PhD
degree from Princeton University, USA
in 2010. He is currently a full professor
of electrical and computer engineering at
George Washington University, USA. His

research interests include network optimization, algorithms, and
machine learning. He received the Meta Research Award in
2021, SecureComm Best Paper Award in 2019, SEAS Faculty
Recognition Award in 2018, Hegarty Faculty Innovation Award in
2017, AT&T VURI Award in 2015, IEEE INFOCOM Best Paper
Award in 2012, Wu Prizes for Excellence at Princeton University
in 2010, IEEE GLOBECOM Best Paper Award in 2009, and IEEE
Signal Processing Society Best Paper Award in 2008.

