
Computer Communications 203 (2023) 163–179

R
Y
X
a

b

A

K
D
S
U

1

l
d
(
a
w
t
c
t
u
a
g
t
T
a
[
c

(

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

obust decentralized stochastic gradient descent over unstable networks
anwei Zheng a,1, Liangxu Zhang a,2, Shuzhen Chen a,∗,1, Xiao Zhang a,∗,1, Zhipeng Cai b,3,
iuzhen Cheng a,4

School of Computer Science and Technology, Shandong University, Qingdao, PR China
Department of Computing Science, Georgia State University, Atlanta, GA 30303, USA

R T I C L E I N F O

eywords:
ecentralized learning
tochastic gradient descent
nstable networks

A B S T R A C T

Decentralized learning is essential for large-scale deep learning due to its great advantage in breaking the
communication bottleneck. Most decentralized learning algorithms focus on reducing the communication
overhead without taking into account the possibility of a shaky network connection, and existing analyses
over unstable networks have various limitations such as centralized settings, strong unrealistic assumptions,
etc. Hence, in this work, we study a non-convex optimization problem over unstable networks that fully
consider unstable factors including unstable network connections, communication and artificially injected
noise. Specifically, we focus on the most commonly used Stochastic Gradient Descent (SGD) algorithm in
a mild decentralized setting and propose a robust algorithm to handle unstable networks. It is shown that
our algorithm can attain a convergence rate which has the same order as decentralized algorithms over stable
networks, and achieves linear speedup comparing with centralized ones. Moreover, the proposed algorithm
also applies to the general case that the data are not independently and identically distributed. Extensive
experiments on image classification demonstrate that the practical performance of our algorithm is comparable
with the state-of-art decentralized algorithms in stable networks with only a little accuracy loss.
. Introduction

Distributed machine learning [1–3], especially for large-scale deep
earning tasks, has attracted a lot of attention both academically and in-
ustrially. A typical distributed learning system is the Parameter Server
PS) [4], where a server maintains and aggregates a global model for
ll client workers. By pulling the global model from the server, client
orkers compute the gradients or model updates and push them to

he server. This architecture needs the server to communicate with all
lients and transfer the whole model. Therefore, PS is not robust when
he server fails or communication is constrained [5]. Different from
sing a central server, another architecture is the shared memory where
ll workers independently compute the local gradients and average the
lobal model by a shared memory [6]. Although this line of work avoids
he problem of server failure, it still has a high communication cost.
heoretical research shows that decentralized algorithms can solve the
bove problems and have the same utility as centralized algorithms
7–9]. Decentralized algorithms reduce communication complexity by
alculating an approximate average gradient between a set of workers

∗ Corresponding authors.
E-mail addresses: zhengyw@sdu.edu.cn (Y. Zheng), lxzhang@mail.sdu.edu.cn (L. Zhang), szchen@mail.sdu.edu.cn (S. Chen), xiaozhang@sdu.edu.cn

X. Zhang), zcai@gsu.edu (Z. Cai), xzcheng@sdu.edu.cn (X. Cheng).
1 Member, IEEE.
2 Student Member, IEEE.
3 Senior Member, IEEE.
4 Fellow, IEEE.

during aggregation. In each optimization iteration, workers just make
a model aggregation with neighbors according to the communication
topology rather than executing a global average. This would inject extra
noise into the average gradients so there is a trade-off between training
accuracy and communication overhead for decentralized methods.

One of the problems often encountered in large-scale decentralized
systems is the underlying unreliability of local devices. Especially in
edge computing and federated learning, the devices involved in training
are typically edge-side devices or private computers, making it difficult
to guarantee stable network connectivity and reliable performance.
Most decentralized approaches, in turn, are based on the assumption
that the network is stable to ensure that communication is always
successful during training. Therefore, when the network connection is
unstable, these algorithms that synchronously aggregate the model will
block until the network connection is restored. This makes applying
typical methods to this faulty scenario directly not feasible. Also, it
is tough to present the convergence of the algorithm directly under
relaxed assumptions when the network connections are unstable.
ttps://doi.org/10.1016/j.comcom.2023.02.025
eceived 8 November 2022; Received in revised form 11 January 2023; Accepted 2
vailable online 2 March 2023
140-3664/© 2023 Elsevier B.V. All rights reserved.
4 February 2023

https://doi.org/10.1016/j.comcom.2023.02.025
https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.02.025&domain=pdf
mailto:zhengyw@sdu.edu.cn
mailto:lxzhang@mail.sdu.edu.cn
mailto:szchen@mail.sdu.edu.cn
mailto:xiaozhang@sdu.edu.cn
mailto:zcai@gsu.edu
mailto:xzcheng@sdu.edu.cn
https://doi.org/10.1016/j.comcom.2023.02.025

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

t
o
l

r
b
p
t
s
a
n
r
S

Table 1
Comparison of related results.

Algorithms Unstable network connections Noise Convergence rate

DPSGD [7] ✗ ✗ 𝑂(1
√

𝑛𝐾
)

RPSa [17] ✓ ✗ 𝑂(1
√

𝑛𝐾
)

Choco-SGDa [12,13] ✗ ✓ 𝑂(1
√

𝑛𝐾
)

A(DP)2SGDa [16] ✗ ✓ 𝑂(1
√

𝐾
)

Our algorithm ✓ ✓ 𝑶(𝟏
√

𝒏𝑲
)

aRPS algorithm considers unstable networks but only focuses on the centralized settings.
Choco-SGD only considers compressed noise and A(DP)2SGD only considers differential
noise.

Another factor to consider in large-scale decentralized learning is
noise. The noise expresses a lower bound on the desired generalization
error that any learning algorithm can achieve on the current task, i.e., it
portrays the difficulty of the learning problem itself. As a result, analyz-
ing the influence of noise on algorithm convergence can help to develop
more resilient algorithms. There are many reasons for noise and the
most intuitive is the Gaussian white noise [10] in the communication
process, which is very common in the wireless channel. In addition to
the inevitable channel noise, there are usually artificially introduced
noises in the process of device communication, such as compression
noise introduced by gradient compression [11–13] and privacy noise
introduced by differential privacy protection [14–16]. Most studies
usually investigate the effect of noise only at the application level.
And the existing theoretical analysis is usually specific to a particular
scenario of the above-mentioned noise sources.

Facing these challenges, it is urgent to explore algorithms that
can be well implemented in unstable networks featured by unstable
network connections and noise. In this unstable network situation,
the technical challenge is that the convergence of the decentralized
learning algorithm should be theoretically guaranteed under some mild
conditions. There have been some works to study unstable network
connections. Consensus optimizations over unreliable networks are
studied in [18,19], but their work is under strong assumptions such
that the feasible domain is compact, the gradients are bounded and
the instability level is bounded. In [17], Yu et al. investigated the
case of unreliable network connectivity under a loose assumption but
only focused on the centralized settings. For communication noise,
the experimental results in [20] show that communication noise in
gradients can generalize the model. Theoretical results in [13] show
that the decentralized algorithms can still converge in a compression
noise environment. Another direction of noise is to ensure data privacy
by introducing differential noise. In [16], the convergence of the decen-
tralized algorithm with differential noise is guaranteed. Existing work
either only considers unstable network connections or only considers
noise. Combining these two issues, we explore the decentralized algo-
rithm over unstable networks and present the theoretical results under
loose assumptions. Specifically, we focus on the most commonly used
SGD algorithm [7] in a mild decentralized setting. SGD has evolved into
a standard and efficient algorithm for solving large-scale distributed
deep learning tasks. Compared with other optimization algorithms, SGD
has many advantages such as high efficiency, good generalization, the
capability of escaping from stagnation, etc. Formally, we aim to solve
the following stochastic optimization problem

min
𝑥∈R𝑛

𝑓 (𝑥) = E𝜉∼𝐹 (𝑥; 𝜉), (1)

where is denoted as data distribution and 𝜉 is a random data sample.
𝑥 denotes the parametric model we intend to train and 𝐹 (⋅) denotes
he predefined loss function. This formulation encapsulates a variety
f well-known learning problems, such as machine learning, federated

earning [21], and deep learning. Our main contributions are as follows.

164
Main Contributions:

• In the first part, we consider a non-convex decentralized opti-
mization problem over unstable network connections and propose
a decentralized SGD algorithm to accommodate this scenario.
Except for some standard assumptions, we only assume a real-
istic and necessary bound on network instability for analyzing
convergence of the proposed learning algorithm. By choosing an
appropriate learning rate, our algorithm achieves a convergence
rate of 𝑂(1

√

𝑛𝐾
), where 𝑛 denotes the number of workers and 𝐾

denotes the number of total iterations. Our results are consistent
with decentralized Stochastic Gradient Descent (SGD) [7] over
reliable network connections. Besides, our theoretical results indi-
cate that our algorithm achieves linear speedup w.r.t. the number
of workers. Moreover, our theoretical results also apply to the
general case that the data are not independently and identically
distributed.

• In the second part, we adapt our algorithm to the scenarios with
noise. Specifically, we propose a general noise model covering
different noise categories such as channel noise, compressed noise
and differential noise. Based on this, we present the convergence
analysis and show the influence of noise on our algorithm. Under
some mild assumption on noise, our algorithm can attain the
same order of convergence rate as that implemented without
considering any noise.

• Experimentally, we apply our algorithm to an image classification
task, illustrating the convergence of our algorithm is the same as
DPSGD [7], the state-of-the-art decentralized SGD algorithm with-
out considering unstable connections and noise, with only a little
accuracy loss. The experimental results, on the CIFAR10 dataset,
show that the convergence speed of our algorithm is comparable
with DPSGD and this is in line with our theoretical analysis. In
addition, via unstable network simulations, we observe that the
training loss decreases as the network instability level decreases,
but the convergence speed is not affected. Surprisingly, our algo-
rithm is robust to noise, especially with a large number of workers
and trained on a complex model.

The comparison results for the convergence rate of the relevant algo-
rithms are shown in Table 1.

Road Map: This paper is organized as follows. After outlining the
elevant work in Section 2, we give the formal problem settings and
asic model of the unstable networks in Section 3. In Section 4, we
ropose our algorithm which is robust to unstable networks and show
hat our algorithm can achieve the same convergence rate as those in
table networks. In Section 5, we specify a general model of noise and
dapt our algorithm to tolerate communication and artificial injected
oise. The same convergence rate is shown to be retained. Finally, we
eport the experimental results in Section 6 and conclude the paper in
ection 7.

Highlights

• We study the effect of unstable networks and noise on the con-
vergence of decentralized algorithms.

• Theoretical works demonstrate that our algorithm can achieve the
sub-linear convergence of 𝑂(1

√

𝑛𝐾
).

• Deep learning experiments verify that our algorithm can achieve
the same convergence rate as the optimal algorithm.

2. Related work

Decentralized training Decentralized methods based on gossip
averages can be good solutions to the case of some workers mal-

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

a

t
c

𝑥

w
a
o

A

functioning. In such methods, all workers are connected through a
peer-to-peer network and each worker aggregates models with only
a portion of the workers, i.e., the neighbors in the network. Thus
a sparse network topology will significantly reduce the communica-
tion load. [7] first gave the theoretical proof showing that decen-
tralized SGD has the same convergence rate with centralized SGD
and experimental results show that decentralized SGD outperforms
centralized SGD in the bandwidth-constrained case. [9] proposed the
SGP algorithm for the situation where the network topology is not
symmetric, i.e., the topology matrix is column stochastic. Later studies
mostly tended to reduce the communication load by cutting the number
of communications or communication compression. [8,22] presented
communication-efficient methods which have a comparable conver-
gence rate with centralized methods. [11] proposed the DCD and ECD
algorithms based on unbiased compressions such as random quantiza-
tion [23] and sparsification [24] with the identical convergence rate as
the centralized algorithm. In [12,13], the authors investigated a more
general approach, called CHOCO-SGD, with arbitrary communication
compression in decentralized training. Another direction is to study
random network topology [25–28], which implies that the weighted
matrix is dynamic or time-varying.

Distributed training with faulty models Most of the existing al-
gorithms require a stable network connection, i.e., the communication
is guaranteed to be successful. However, some practical applications
must be able to handle unstable network connections, and this is
particularly relevant in federated learning [29]. There have been many
related works to study unstable network connections but they all have
some limitations. [30–32] investigated the case of delayed information
exchange in distributed training but only focused on centralized scenar-
ios. [17] analyzed another scenario of unstable network connectivity
where communication would fail in a fixed probability, but only the
centralized scenarios and the AllReduce method were considered. Ad-
ditionally, there are several concerns with current research on unstable
network connections in decentralized systems. [18,19] analyzed the
decentralized algorithm with delay gradients and characterized the
convergence rate under bounded delay but their work is under strong
assumptions such that the feasible domain is compact, the gradients are
bounded and instability level is bounded. In addition to the situation
that messages may be delayed in reception due to unstable networks,
messages can be interrupted by noise during the exchange process. On
the one hand, the noise can be artificially injected. [33] show that in-
troducing noise into neural network training could better generalize the
training model but they only present experimental verification without
theoretical proof. Numerous works [14–16] have provided theoretical
results, however, these only apply to a certain noise environment. On
the other hand, there inevitably is some noise in the communication
channel. [34,35] take into account both unstable network connections
and noise, but their work is limited to strongly convex scenarios. Thus
we combine these two directions and fully consider a faulty model in
which there is both unstable network connectivity and noise during
communication under the relaxation assumptions.

3. Preliminaries

We consider a general decentralized distributed system consisting
of 𝑛 workers and all workers are connected to cooperatively optimize a
non-convex problem through the stochastic gradient descent method.
Let graph = (,) denotes the communication network topology,
where ∶= {1, 2,… , 𝑛} and denotes the set of edges in the graph.
Let 𝑖 = {𝑗 ∈ ∣ (𝑖, 𝑗) ∈ } denotes the neighbor set of worker 𝑖
nd worker 𝑖 can only communicate with workers who belong to . In
𝑖

165
Table 2
Frequently used notations.

Notations Descriptions

𝑛 The number of workers
𝑑 Dimensions of the local model
𝑥𝑘𝑖 Local model of worker 𝑖 at iteration 𝑘
�̂�𝑘𝑖 The last successfully received model
𝑄(𝑥𝑘𝑖) The perturbed model of worker 𝑖 at iteration 𝑘
𝜉𝑘𝑖 The sample data of worker 𝑖 at iteration 𝑘
𝐹𝑖(𝑥; 𝜉) Loss function of worker 𝑖
𝑓𝑖(𝑥) Expectation of loss function of worker 𝑖
𝛾 Learning rate
𝐾 The total iterations
𝑊𝑘 The mixing matrix at iteration 𝑘
∇𝑓 (⋅) The gradient of the function 𝑓 (⋅)
𝟏𝑛 The full-one vector in R𝑛

𝑒𝑖 The 𝑖th element of the standard basis of R𝑛

𝜆𝑖(⋅) The 𝑖th largest eigenvalue of a matrix
‖ ⋅ ‖ The vector 𝓁2 norm or the matrix spectral norm
𝑋𝑘 [𝑥𝑘1 , 𝑥

𝑘
2 ,… , 𝑥𝑘𝑛] ∈ R𝑑×𝑛

𝜕𝐹 (𝑋𝑘 , 𝜉𝑘) [∇𝐹1(𝑥𝑘1 , 𝜉
𝑘
1),… ,∇𝐹𝑛(𝑥𝑘𝑛 , 𝜉

𝑘
𝑛)] ∈ R𝑑×𝑛

𝜕𝑓 (𝑋𝑘) [∇𝑓1(𝑥𝑘1),… ,∇𝑓𝑛(𝑥𝑘𝑛)] ∈ R𝑑×𝑛

particular, we let 𝑖 also contain 𝑖. In the stochastic gradient descent
method, worker 𝑖 sample data 𝜉 from a local data distribution 𝑖 to
optimize the local loss function 𝐹𝑖(𝑥; 𝜉) of model 𝑥 ∈ R𝑛. Based on
hese mathematical setups, by distributing the data to all workers we
an rewrite Eq. (1) in the following form:

min
∈R𝑛

𝑓 (𝑥) = 1
𝑛

𝑛
∑

𝑖=1
E𝜉∼𝑖

𝐹𝑖(𝑥; 𝜉)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=∶𝑓𝑖(𝑥)

. (2)

Note that we do not assume the data distribution is i.i.d.. This is a more
general setup in practical applications.

Unstable Network Connections Consider a scenario where the
workers who perform calculations during distributed learning are some
personal devices or edge devices, which are very easy to go offline
or crash. These devices may be disconnected from other devices due
to unstable network connections but these devices are highly robust
and can reconnect back in time. Given a non-negative constant 𝜏𝑘𝑖
indicates that offline worker 𝑖 has been disconnected for 𝜏𝑘𝑖 iterations, in
other words, neighbors of worker 𝑖 have not received information from

orker 𝑖 since iteration 𝑘− 𝜏𝑘𝑖 . Let 𝜏𝑘 = max 𝜏𝑘𝑖 to denote the worst case
t iteration 𝑘. We make the following assumption which is necessary in
ur convergence analysis.

ssumption 1 (Bounded Instability). We assume that the time 𝜏𝑘𝑖 at
which the offline worker has been offline at the 𝑘th iteration is uni-
formly bounded, i.e., there exits 𝜏 > 0 such that 𝜏𝑘 ≤ 𝜏 for all iteration
𝑘.

This is a practical assumption because most devices are robust and
network protocols usually have a heartbeat mechanism to reconnect
after disconnection. Assumption 1 illustrates that the time required to
reconnect for any worker after it goes offline is bounded by 𝜏. Thus we
use 𝜏 to describe the instability of the entire network.

Throughout this paper, some frequently used notations are summa-
rized in Table 2.

4. Robust decentralized SGD

4.1. Algorithm

In this section, we present our algorithm RDSGD-Robust Decentral-
ized Stochastic Gradient Descent to deal with the scenario of unstable

network connections. The existing algorithms usually block themselves

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

𝜕

N

A
m

𝑈

s

Algorithm 1: RDSGD algorithm
Input: Initialize 𝑥0𝑖 and �̂�0𝑖 , ∀𝑖 ∈ [𝑛] with the same value,

mixing matrix 𝑊 , learning rate 𝛾 and number of total
iterations 𝐾.

1 for 𝑘 = 0, 1,… , 𝐾 − 1(all workers in parallel) do
2 Randomly sample 𝜉𝑘𝑖 from local data for worker 𝑖 ∈ [𝑛].
3 Compute gradient ∇𝐹 (𝑥𝑘𝑖 , 𝜉

𝑘
𝑖).

4 Update model according to 𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 − 𝛾∇𝐹 (𝑥𝑘𝑖 , 𝜉
𝑘
𝑖).

5 Send 𝑥𝑘+1𝑖 and receive models from neighbors.
6 if receive any 𝑥𝑘+1𝑗 , 𝑗 ∈ 𝑖 then
7 �̂�𝑘+1𝑗 = 𝑥𝑘+1𝑗 .

8 Aggregate model by 𝑥𝑘+1𝑖 =
∑

𝑗∈𝑖 𝑊
[𝑖𝑗]
𝑘 �̂�𝑘+1𝑗 .

when any worker fails to receive information from its neighbors and
the whole algorithm fails to work. To address this restriction, we use
additional memory space to deal with the loss of information due to
that the network connections are disabled.

In the RDSGD algorithm, in addition to holding a local model, each
worker maintains a buffer to store the received models of neighboring
workers. At each iteration, each node randomly samples from the local
data, computes a local gradient in parallel and updates the model along
the negative gradient direction. After that, each worker communicates
with its neighbors and exchanges models with each other. However, it
is not feasible to use the shared information directly to perform the
model aggregation, because the communication may fail due to the
instability of the network connection. Thus each worker can use the
buffer to record the shared information and update the buffer when
communication is successful. Then, each worker uses its model and the
information in the buffer to perform model aggregation.

In detail, at iteration 𝑘, we use 𝑥𝑘𝑖 to denote the local model of
worker 𝑖. And worker 𝑖 maintains a local buffer �̂�𝑘𝑗 to record the model
of neighbor 𝑗, where 𝑗 ∈ 𝑖. At iteration 𝑘, RDSGD performs the
following steps:

• Gradient calculation: each worker randomly samples data 𝜉𝑘𝑖
from local data distribution and calculates the stochastic gradient
∇𝐹 (𝑥𝑘𝑖 , 𝜉

𝑘
𝑖).

• Model update: each worker updates the model by a regular SGD
step 𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 − 𝛾∇𝐹 (𝑥𝑘𝑖 , 𝜉

𝑘
𝑖) given the learning rate 𝛾.

• Model aggregation: each worker sends the model to its neigh-
bors and receives models from all of its neighbors. If worker 𝑖
successfully receives the model of neighbor 𝑗, then �̂�𝑘+1𝑗 = 𝑥𝑘+1𝑗 ;
else �̂�𝑘+1𝑗 remains unchanged. After that, each worker performs
𝑥𝑘+1𝑖 =

∑

𝑗∈𝑖 𝑊
[𝑖𝑗]
𝑘 �̂�𝑘+1𝑗 , where 𝑊𝑘 is a mixing matrix and 𝑊 [𝑖𝑗]

𝑘 is
the 𝑖th row and 𝑗th column element of 𝑊𝑘.

Note that model update and model aggregation can be exchanged,
which does not affect our theoretical analysis. The pseudo-code of our
algorithm is given by Algorithm 1.

4.2. Theoretical results

In this part, we present the main theoretical results of the RDSGD
algorithm over unstable networks. Theorem 1 shows our numerical
results of convergence rate which maintains the same as standard
algorithms. For the sake of proving the theorem, we need to make some
settings. First, let

𝑋𝑘 = [𝑥𝑘1 ,… , 𝑥𝑘𝑛] ∈ R𝑑×𝑛.

According to our model of unstable networks and Assumption 1, when
𝑘 𝑘 𝑘
worker 𝑖 is not offline, �̂�𝑖 = 𝑥𝑖 , and when worker 𝑖 is offline, �̂�𝑖

166
indicates the last successful message 𝑥
𝑘−𝜏𝑘𝑖
𝑖 . Thus in the worst case, we

can obtain �̂�𝑘𝑖 = 𝑥𝑘−𝜏𝑘𝑖 and in the matrix form we have

�̂�𝑘 = 𝑋𝑘−𝜏𝑘 = [�̂�𝑘1 ,… , �̂�𝑘𝑛] ∈ R𝑑×𝑛.

Besides, we define the following matrix forms:

𝜕𝐹 (𝑋𝑘, 𝜉𝑘)

=[∇𝐹1(𝑥𝑘1 , 𝜉
𝑘
1),… ,∇𝐹𝑛(𝑥𝑘𝑛 , 𝜉

𝑘
𝑛)] ∈ R𝑑×𝑛,

𝑓 (𝑋𝑘) = [∇𝑓1(𝑥𝑘1),… ,∇𝑓𝑛(𝑥𝑘𝑛)] ∈ R𝑑×𝑛.

Returning to our algorithm, in line 8, the aggregation process uses a
model with delay information, and this delay model will be used in the
next iteration to calculate the gradient. Consequently, we can simplify
the problem to the fact that the gradient is calculated utilizing a model
containing delay information at each iteration. Note that the update
formula of the algorithm in matrix form can be written as

𝑋𝑘+1 = 𝑋𝑘𝑊𝑘 − 𝛾𝜕𝐹 (�̂�𝑘, 𝜉𝑘), (3)

ext, we make some necessary assumptions:

ssumption 2. Throughout this paper, we make the following com-
only used assumptions:

1. Lipschitzian gradients (L-smooth): All local functions 𝑓𝑖(⋅) and
their gradients ∇𝑓𝑖(⋅) are L-Lipschitz continuous, i.e.,

‖𝑓𝑖(𝑥) − 𝑓𝑖(𝑦)‖2 ≤ 𝐿‖𝑥 − 𝑦‖,

‖∇𝑓𝑖(𝑥) − ∇𝑓𝑖(𝑦)‖2 ≤ 𝐿‖𝑥 − 𝑦‖,

for all 𝑥, 𝑦 ∈ R𝑑 and 𝑖 ∈ , where 𝐿 is the Lipschitz constant.
2. Bounded variance: Assume the variance of the stochastic gradi-

ent is bounded for any 𝑥 on each worker.

E𝜉∼𝑖
‖∇𝐹𝑖(𝑥; 𝜉) − ∇𝑓𝑖(𝑥)‖2 ≤ 𝜎2,∀𝑖,∀𝑥,

1
𝑛

𝑛
∑

𝑖=1
‖∇𝑓𝑖(𝑥; 𝜉) − ∇𝑓 (𝑥)‖2 ≤ 𝜍2,∀𝑖,∀𝑥.

Note that if data is i.i.d. then 𝜍 = 0.
3. Spectral gap: 𝑊𝑘 is a doubly stochastic matrix (𝑊𝑘𝟏 = 𝟏, 𝟏⊤𝑊𝑘 =

𝟏⊤) and we define 𝜌 ∶= |𝜆2(E[𝑊 ⊤
𝑘 𝑊𝑘])| ∈ [0, 1).

4. Start from 0: We assume all workers’ models start at 0, in other
words, 𝑋0 = [0,… , 0] for simplifying the proof w.l.o.g.

Before presenting Theorem 1, we define some variables:

1 =

(

1 − 72
(1 −

√

𝜌)2
𝛾2𝑛𝐿2

)

,

𝑈2 =
𝛾 − 𝛾2𝐿

2
− 𝜏𝛾3𝐿2 −

12𝑛𝛾3𝐿2

(1 −
√

𝜌)2𝑈1
.

Theorem 1. Under Assumptions 1 and 2, if 𝑈1 > 0 and 𝑈2 ≥ 0 are
atisfied, then we have the following convergence rate

1
𝐾

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

≤
2(𝑓0 − 𝑓⋆)

𝛾𝐾
+

2𝜏2𝛾2𝜎2𝐿2

𝑛

+
𝛾𝜎2𝐿
𝑛

+
4𝑛𝛾2𝐿2(𝜎2 + 6𝜍2)

𝑈1

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

,

(4)

where 𝑓 = 𝑓 (0) and 𝑓⋆ denotes the optimal solution.
0

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

i

𝐾

d

g
t

For non-convex functions, the point where the gradient is 0 is the local
optimal solution. Theorem 1 guarantees convergence of the algorithm
by giving an upper bound on the average gradient of all workers.
Specifically, by choosing an appropriate learning rate, we can get the
following corollary

Corollary 1. Under Assumptions 1 and 2, by choosing 𝛾 = 1

𝐿+
√

𝜎2+6𝜍2
√

𝐾
𝑛

,

we have the following convergence rate

1
𝐾

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

≤
2(𝑓0 − 𝑓⋆ + 𝜏2𝐿)𝐿

𝐾

+
(2𝑓0 − 2𝑓⋆ + 5𝐿)

√

𝜎2 + 6𝜍2
√

𝑛𝐾
,

(5)

f 𝐾 is large enough to satisfy

≥ 4𝑛5𝐿2

𝜎2 + 6𝜍2

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)2

,

𝐾 ≥ 𝑛
𝜎2 + 6𝜍2

max

{

4𝐿2, (
√

6𝜏 − 1)2𝐿2, 144𝑛𝐿2

(1 −
√

𝜌)2

}

,

(6)

where 𝑓0 and 𝑓⋆ follow the definitions in Theorem 1.

Corollary 1 indicates a general convergence rate 𝑂(1
𝐾 + 1

√

𝑛𝐾
). We

iscuss some properties about our theoretical results below.

• Converge to a ball. Based on our theoretical results, our final
average gradient of all workers is constrained to a ball of a critical
point. It is because the learning rate we choose is a constant
and this is a general choice for 𝛾, just as some other theoretical
analysis for SGD.

• Comparing with SGD and DPSGD. In Corollary 1, if 𝐾 is suf-
ficiently large, the second term is the dominant term and the
convergence rate is 𝑂(1

√

𝑛𝐾
). Also, if 𝜏 = 0 and 𝑛 = 1 our algorithm

is centralized SGD and the convergence rate reduces to 𝑂(1
√

𝐾
),

which is consistent with the convergence rate of centralized SGD
and decentralized SGD [7].

• Linear Speedup. When 𝐾 is large enough, the convergence of our
algorithm is 𝑂(1

√

𝑛𝐾
). Note that RDSGD to achieve 𝜖 accuracy re-

quires 𝐾 to satisfy 𝐾 ≥ 1
𝑛𝜖2

, which indicates that the convergence
efficiency increases at a linear rate with respect to the number of
workers.

4.3. Analysis of Algorithm 1

In this part, we give theoretical support for Theorem 1 and Corol-
lary 1 in detail. Before we present the proof of our main results, we
give some necessary notions and lemmas. We let

𝑀𝑘 ∶= 1
𝑛

𝑛
∑

𝑖=1

‖

‖

‖

‖

𝑋𝑘𝟏𝑛
𝑛

−𝑋𝑘𝑒𝑖
‖

‖

‖

‖

2
, ∀ 𝑘 > 0, (7)

and we have �̂�𝑘 ∶= 𝑀𝑘−𝜏𝑘 . Note that 𝑀𝑘 is the average consistency
error which declares the gap between the global average model and
local model. To obtain the bound of average gradient of all workers,
we need to bound the 𝑀𝑘 first.

Lemma 1. Under Assumption 2 we have

‖

‖

‖

‖

𝟏𝑛
𝑛

−𝑊 𝑘𝑒𝑖
‖

‖

‖

‖

2
≤ 𝜌𝑘, ∀ 𝑖 ∈ {1, 2,… , 𝑛}, 𝑘 ∈ N.

Proof. Let 𝑊 ∞ = lim𝑘→∞ 𝑊 𝑘, and from Assumption 2 we have 𝟏𝑛
𝑛 =

∞
𝑊 𝑒𝑖. Thus

167
‖

‖

‖

‖

𝟏𝑛
𝑛

−𝑊 𝑘𝑒𝑖
‖

‖

‖

‖

2
= ‖(𝑊 ∞ −𝑊 𝑘)𝑒𝑖‖2

≤ ‖𝑊 ∞ −𝑊 𝑘
‖

2
‖𝑒𝑖‖

2

= ‖𝑊 ∞ −𝑊 𝑘
‖

2

≤ 𝜌𝑘. □

Lemma 1 is a common property for doubly stochastic matrix. To
ive an upper bound on the average consistency error, we first establish
he relationship between the local loss function and 𝑀𝑘.

Lemma 2. Under Assumption 2 and ∀𝑗 ≥ 0 we have

E‖𝜕𝑓 (�̂�𝑗)‖2 ≤ 12𝑛𝐿2E�̂�𝑗 + 6𝑛𝜍2 + 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

.

Proof. We start from the norm of 𝜕𝑓 (�̂�𝑗). Using the definition of 𝐿2
norm of matrix and triangular inequality, we have

E‖𝜕𝑓 (�̂�𝑗)‖2

=
𝑛
∑

𝑖=1
E‖∇𝑓𝑖(�̂�

𝑗
𝑖)‖

2

=
𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

‖

∇𝑓𝑖(�̂�
𝑗
𝑖) −

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

+
𝜕𝑓 (�̂�𝑗)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

‖

2

≤ 2
𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

‖

∇𝑓𝑖(�̂�
𝑗
𝑖) −

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

+ 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

.

(8)

To bound consistency error, we introduce two variables ∇𝑓𝑖
(

�̂�𝑗𝟏𝑛
𝑛

)

and
𝜕𝑓

(

�̂�𝑗 𝟏𝑛
𝑛

)

𝟏𝑛

𝑛 , and then use the L-smooth property to get the form of
𝑀𝑘. For the first term of (8), we have

𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

‖

∇𝑓𝑖(�̂�
𝑗
𝑖) −

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

≤ 3
𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

‖

∇𝑓𝑖(�̂�
𝑗
𝑖) − ∇𝑓𝑖

(

�̂�𝑗𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

‖

2

+ 3
𝑛
∑

𝑖=1
E

‖

‖

‖

‖

‖

‖

‖

‖

‖

∇𝑓𝑖

(

�̂�𝑗𝟏𝑛
𝑛

)

−
𝜕𝑓

(

�̂�𝑗𝟏𝑛
𝑛

)

𝟏𝑛

𝑛

‖

‖

‖

‖

‖

‖

‖

‖

‖

2

+ 3
𝑛
∑

𝑖=1
E

‖

‖

‖

‖

‖

‖

‖

‖

‖

𝜕𝑓
(

�̂�𝑗𝟏𝑛
𝑛

)

𝟏𝑛

𝑛
−

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

‖

‖

‖

2

≤ 3𝑛𝐿2E�̂�𝑗 + 3
𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

‖

∇𝑓𝑖

(

�̂�𝑗𝟏𝑛
𝑛

)

− ∇𝑓

(

�̂�𝑗𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

‖

2

+ 3𝑛E

‖

‖

‖

‖

‖

‖

‖

‖

‖

∑𝑛
𝑖=1

(

∇𝑓𝑖

(

�̂�𝑗𝟏𝑛
𝑛

)

− ∇𝑓𝑖(�̂�
𝑗
𝑖)
)

𝑛

‖

‖

‖

‖

‖

‖

‖

‖

‖

2

≤ 6𝑛𝐿2E�̂�𝑗 + 3𝑛𝜍2,

where the last term of last step comes from L-smooth.
Combining the above inequalities, we derive Lemma 2:

E‖𝜕𝑓 (�̂�𝑗)‖2 ≤ 12𝑛𝐿2E�̂�𝑗 + 6𝑛𝜍2 + 2𝑛E
‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

2

. □

‖

‖

‖

‖

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

g
c

L

P

F

𝑇

w
v
c

𝑇

F

𝑇

Lemma 2 is an important formula to prove Theorem 1, which
ives the relation between the gradient with delay and the average
onsistency error. Using Lemma 2 we can get the following Lemmas.

emma 3. According to Assumption 2, Lemmas 1 and 2 and for any
𝑘 > 0, we have

E
‖

‖

‖

‖

𝑋𝑘+1𝟏𝑛
𝑛

−𝑋𝑘+1𝑒𝑖
‖

‖

‖

‖

2

≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

+ 4𝑛𝛾2
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎛

⎜

⎜

⎝

𝜌𝑘−𝑗 +
2
√

𝜌𝑘−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝛾2𝑛𝐿2
𝑘
∑

𝑗=0
E�̂�𝑗

⎛

⎜

⎜

⎝

𝜌𝑘−𝑗 +
2
√

𝜌𝑘−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

.

roof. For convenience, we let 𝛥(�̂�𝑗) = 𝜕𝐹 (�̂�𝑗 ; 𝜉𝑗)− 𝜕𝑓 (�̂�𝑗). According
to the updating formula (3) and Assumption 2, we have

E
‖

‖

‖

‖

𝑋𝑘+1𝟏𝑛
𝑛

−𝑋𝑘+1𝑒𝑖
‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

𝑋𝑘𝟏𝑛−𝛾𝜕𝐹 (�̂�𝑘;𝜉𝑘)𝟏𝑛
𝑛 −

(𝑋𝑘𝑊𝑘𝑒𝑖 − 𝛾𝜕𝐹 (�̂�𝑘; 𝜉𝑘)𝑒𝑖)

‖

‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

‖

𝑋0𝟏𝑛−
∑𝑘

𝑗=0 𝛾𝜕𝐹 (�̂�𝑗 ;𝜉𝑗)𝟏𝑛
𝑛 −𝑋0

∏𝑘
𝑗=0 𝑊𝑗𝑒𝑖

+
∑𝑘

𝑗=0 𝛾𝜕𝐹 (�̂�𝑗 ; 𝜉𝑗)
∏𝑘

𝑞=𝑗+1 𝑊𝑞𝑒𝑖

‖

‖

‖

‖

‖

‖

2

= 𝛾2E
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑗=0
𝜕𝐹 (�̂�𝑗 ; 𝜉𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

≤ 2𝛾2 E
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑗=0
𝛥(�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇1

+ 2𝛾2 E
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑗=0
𝜕𝑓 (�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇2

(9)

The form of 𝑇1 is the square of the 𝐿2 norm of the sum of the 𝑘 + 1
terms and each term is the product of two factors. Therefore, we can
expand 𝑇1 with sum square formula to take the sum to the outside of
the norm squared. Next, for the square of the 𝐿2 norm of the product
of two factors, we can use Holder’s inequality to get product of squares
of the 𝐿2 norm of two factors.

𝑇1 = E
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑗=0
𝛥(�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

=
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝛥(�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇3

+ 2
∑

𝑗≠𝑗′
E

⟨

𝛥(�̂�𝑗)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

,

𝛥(�̂�′
𝑗)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇4

For 𝑇3, using Holder’s inequality and from Lemma 1, we have:

𝑇3 =
𝑘
∑

E
‖

‖

‖

‖

(𝛥(�̂�𝑗))

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

2

𝑗=0 ‖

‖

𝑞=𝑗+1 ‖

‖

168
≤
𝑘
∑

𝑗=0
E ‖

‖

‖

𝛥(�̂�𝑗)
‖

‖

‖

2
‖

‖

‖

‖

‖

‖

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

‖

‖

‖

‖

‖

‖

2

≤
𝑘
∑

𝑗=0
E ‖

‖

‖

𝛥(�̂�𝑗)
‖

‖

‖

2

𝐹

‖

‖

‖

‖

‖

‖

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

‖

‖

‖

‖

‖

‖

2

≤ 𝑛𝜎2
𝑘
∑

𝑗=0
𝜌(𝑘−𝑗) ≤ 𝑛𝜎2

1 − 𝜌

or 𝑇4, using Cauchy–Schwarz’s inequality:

4 =
∑

𝑗≠𝑗′
E

⟨

𝛥(�̂�𝑗)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

,

𝛥(�̂�𝑗′)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

⟩

≤
∑

𝑗≠𝑗′
E
⎛

⎜

⎜

⎜

⎝

‖

‖

‖

‖

𝛥(�̂�𝑗)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅
‖

‖

‖

‖

𝛥(�̂�𝑗′)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

≤
∑

𝑗≠𝑗′
E
⎛

⎜

⎜

⎜

⎝

‖

‖

‖

𝛥(�̂�𝑗)
‖

‖

‖

‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅ ‖‖
‖

𝛥(�̂�𝑗′)
‖

‖

‖

‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

≤ E
∑

𝑗≠𝑗′

⎛

⎜

⎜

⎜

⎝

𝑛𝜎2
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

≤ E
∑

𝑗≠𝑗′
𝑛𝜎2𝜌𝑘−

𝑗+𝑗′
2 ,

here the last second inequality comes from the assumption that the
ariance of the stochastic gradient is bounded and the last inequality
omes from Lemma 1. Next we can continue to bound 𝑇4 with 𝜎 and 𝜌:

4 = 2𝑛𝜎2
∑

𝑗>𝑗′
𝜌𝑘−

𝑗+𝑗′
2

= 2𝑛𝜎2𝜌
(𝜌𝑘∕2 − 1)(𝜌𝑘∕2 −

√

𝜌)

(
√

𝜌 − 1)2(
√

𝜌 + 1)
≤ 2𝑛𝜎2 1

(1 −
√

𝜌)2
.

Putting 𝑇3 and 𝑇4 back to 𝑇1 we obtain:

𝑇1 ≤ 𝑛𝜎2
(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

. (10)

Next, we then start to bounding 𝑇2 in the same way. At first, we expend
the 𝑇2 with sum square formula to take the sum to the outside of the
norm squared.

𝑇2 = E
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑗=0
𝜕𝑓 (�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

=
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇5

+
∑

𝑗≠𝑗′
E

⟨

𝜕𝑓 (�̂�𝑗)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

,

𝜕𝑓 (�̂�𝑗′)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇6

.

or 𝑇5, we have:

5 =
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)

(

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

‖

‖

2

≤
𝑘
∑

𝑗=0
E‖𝜕𝑓 (�̂�𝑗)‖2

‖

‖

‖

‖

‖

‖

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

‖

‖

‖

‖

‖

‖

2

≤ 12𝑛𝐿2
𝑘
∑

E�̂�𝑗

‖

‖

‖

‖

𝟏𝑛
𝑛

−
𝑘
∏

𝑊𝑞𝑒𝑖
‖

‖

‖

‖

2

+ 6𝑛𝜍2 1
1 − 𝜌
𝑗=0 ‖

‖

𝑞=𝑗+1 ‖

‖

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

w

𝐾

E

+ 2𝑛
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
‖

‖

‖

‖

‖

‖

𝟏𝑛
𝑛

−
𝑘
∏

𝑞=𝑗+1
𝑊𝑞𝑒𝑖

‖

‖

‖

‖

‖

‖

2

≤ 12𝑛𝐿2
𝑘
∑

𝑗=0
E�̂�𝑗𝜌

𝑘−𝑗 + 6𝑛𝜍2 1
1 − 𝜌

+ 2𝑛
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝑗 .

We derive 𝑇6 in the same way as we deduced 𝑇3 :

∑

𝑗≠𝑗′
E

⟨

(𝜕𝑓 (�̂�𝑗))
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

,

(𝜕𝑓 (�̂�𝑗′))
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

⟩

≤
∑

𝑗≠𝑗′
E
⎛

⎜

⎜

⎜

⎝

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅
‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗′)
(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

≤
∑

𝑗≠𝑗′
E
⎛

⎜

⎜

⎜

⎝

‖𝜕𝑓 (�̂�𝑗)‖ ⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅

‖𝜕𝑓 (�̂�𝑗′)‖ ⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

≤
∑

𝑗≠𝑗′
E
⎛

⎜

⎜

⎜

⎝

‖𝜕𝑓 (�̂�𝑗)‖2

2 ⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

+
∑

𝑗≠𝑗′
E
⎛

⎜

⎜

⎜

⎝

‖𝜕𝑓 (�̂�𝑗′)‖
2

2 ⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⋅
‖

‖

‖

‖

(

𝟏𝑛
𝑛 −

∏𝑘
𝑞=𝑗′+1 𝑊𝑞𝑒𝑖

)

‖

‖

‖

‖

⎞

⎟

⎟

⎟

⎠

≤
∑

𝑗≠𝑗′
E

(

‖𝜕𝑓 (�̂�𝑗)‖2

2
+

‖𝜕𝑓 (�̂�𝑗′)‖2

2

)

𝜌𝑘−
𝑗+𝑗′
2

=
∑

𝑗≠𝑗′
E(‖𝜕𝑓 (�̂�𝑗)‖2)𝜌

𝑘− 𝑗+𝑗′
2

≤
𝑘
∑

𝑗≠𝑗′

⎛

⎜

⎜

⎝

12𝑛𝐿2E�̂�𝑗 + 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

𝜌𝑘−
𝑗+𝑗′
2

+
∑

𝑗≠𝑗′
6𝑛𝜍2𝜌𝑘−

𝑗+𝑗′
2 ,

here the second term can be bounded with 𝜍 and 𝜌:

∑

𝑗≠𝑗′
6𝑛𝜍2𝜌𝑘−

𝑗+𝑗′
2 = 12𝑛𝜍2

∑

𝑗>𝑗′
𝜌𝑘−

𝑗+𝑗′
2 ≤ 12𝑛𝜍2

(1 −
√

𝜌)2
,

So 𝑇6 can be written as follow:

𝑇6 ≤
𝑘
∑

𝑗≠𝑗′

⎛

⎜

⎜

⎝

12𝑛𝐿2E�̂�𝑗 + 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

𝜌𝑘−
𝑗+𝑗′
2

+
∑

𝑗≠𝑗′
6𝑛𝜍2𝜌𝑘−

𝑗+𝑗′
2

≤ 2
𝑘
∑

𝑗=0

(

12𝑛𝐿2E�̂�𝑗

𝑘
∑

𝑗′=𝑗+1

√

𝜌
2𝑘−𝑗−𝑗′

)

+
12𝑛𝜍2

(1 −
√

𝜌)2

+ 2
𝑘
∑

𝑗=0

⎛

⎜

⎜

⎝

2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2 𝑘
∑

𝑗′=𝑗+1

√

𝜌
2𝑘−𝑗−𝑗′

⎞

⎟

⎟

⎠

≤ 2
𝑘
∑

𝑗=0

⎛

⎜

⎜

⎝

12𝑛𝐿2E�̂�𝑗 + 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

√

𝜌𝑘−𝑗

1 −
√

𝜌

+
12𝑛𝜍2

√ 2
(1 − 𝜌)

169
Plugging 𝑇5 and 𝑇6 into 𝑇2, we have the upper bound for 𝑇2:

𝑇2 ≤ 12𝑛𝐿2
𝑘
∑

𝑗=0
E�̂�𝑗𝜌

𝑘−𝑗 + 6𝑛𝜍2 1
1 − 𝜌

+ 2𝑛
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝑗 +
12𝑛𝜍2

(1 −
√

𝜌)2

+ 2
𝑘
∑

𝑗=0

⎛

⎜

⎜

⎝

12𝑛𝐿2E�̂�𝑗 + 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

√

𝜌𝑘−𝑗

1 −
√

𝜌

≤ 12𝑛𝐿2
𝑘
∑

𝑗=0
E�̂�𝑗𝜌

𝑘−𝑗 + 2𝑛
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝑗

+ 2
𝑘
∑

𝑗=0

⎛

⎜

⎜

⎝

12𝑛𝐿2E�̂�𝑗 + 2𝑛E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

√

𝜌𝑘−𝑗

1 −
√

𝜌

+ 6𝑛𝜍2
(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

(11)

Finally substitute (10) and (11) into (9), we complete the proof. □

Lemma 3 uses the definition of consistency error to give a relation-
ship between consistency error and gradients in the presence of delays.
Using Lemmas 2 and 3 we can easily obtain the following lemma:

Lemma 4. Let 𝑈1 =
(

1 − 72
(1−

√

𝜌)2
𝛾2𝑛𝐿2

)

and if 𝑈1 > 0, we have

−1
∑

𝑘=0
E�̂�𝑘 ≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾
𝑈1

+ 12
(1 −

√

𝜌)2𝑈1
𝑛𝛾2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

.

Proof. According to the definition of �̂�𝑘 = 𝑋𝑘−𝜏𝑘 , �̂�𝑘 is a model
parameter with delay information. Substituting �̂�𝑘 into Lemma 3 we
obtain the following formula:

E
‖

‖

‖

‖

‖

�̂�𝑘𝟏𝑛
𝑛

− �̂�𝑘𝑒𝑖
‖

‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

𝑋𝑘−𝜏𝑘𝟏𝑛
𝑛

−𝑋𝑘−𝜏𝑘𝑒𝑖
‖

‖

‖

‖

‖

2

≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

+ 4𝑛𝛾2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝜏𝑘−1−𝑗
⎞

⎟

⎟

⎠

+ 4𝑛𝛾2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
2
√

𝜌𝑘−𝜏𝑘−1−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝛾2𝑛𝐿2
𝑘−𝜏𝑘−1
∑

𝑗=0
E�̂�𝑗

⎛

⎜

⎜

⎝

𝜌𝑘−𝜏𝑘−1−𝑗 +
2
√

𝜌𝑘−𝜏𝑘−1−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

Observing the above inequality, the last term on the right-hand side
of the inequality is the term related to �̂� . By averaging the left-hand
side of the inequality over 𝑛 nodes we can establish the relationship
between average consensus error with gradient with delay. We continue
by bounding its average �̂�𝑘 on all nodes, which is defined by:

�̂�𝑘 ∶= 1
𝑛

𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

�̂�𝑘𝟏𝑛
𝑛

− �̂�𝑘𝑒𝑖
‖

‖

‖

‖

‖

2

≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1 + 2
√ 2

)

1 − 𝜌 (1 − 𝜌)

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

S

B

W
a

p

P
w
A

d

E
+ 4𝑛𝛾2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝜏𝑘−1−𝑗
⎞

⎟

⎟

⎠

+ 4𝑛𝛾2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
2
√

𝜌𝑘−𝜏𝑘−1−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝛾2𝑛𝐿2
𝑘−𝜏𝑘−1
∑

𝑗=0
E�̂�𝑗

⎛

⎜

⎜

⎝

𝜌𝑘−𝜏𝑘−1−𝑗 +
2
√

𝜌𝑘−𝜏𝑘−1−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

umming from 𝑘 = 0 to 𝐾 − 1 we obtain:

𝐾−1
∑

𝑘=0
E�̂�𝑘 ≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 4𝑛𝛾2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝜏𝑘−1−𝑗
⎞

⎟

⎟

⎠

+ 4𝑛𝛾2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
2
√

𝜌𝑘−𝜏𝑘−1−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝛾2𝑛𝐿2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E�̂�𝑗

⎛

⎜

⎜

⎝

2
√

𝜌𝑘−𝜏𝑘−1−𝑗

1−
√

𝜌

+𝜌𝑘−𝜏𝑘−1−𝑗

⎞

⎟

⎟

⎠

Summing the terms containing 𝜌 and reducing them using the sum of
infinite series, we obtain:
𝐾−1
∑

𝑘=0
E�̂�𝑘 ≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 4𝑛𝛾2
𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎛

⎜

⎜

⎝

∞
∑

𝑖=0
𝜌𝑖 +

2
∑∞

𝑖=0
√

𝜌𝑖

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝛾2𝑛𝐿2
𝐾−1
∑

𝑘=0
E�̂�𝑘

⎛

⎜

⎜

⎝

∞
∑

𝑖=0
𝜌𝑖 +

2
∑∞

𝑖=0
√

𝜌𝑖

1 −
√

𝜌

⎞

⎟

⎟

⎠

≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 12
(1 −

√

𝜌)2
𝑛𝛾2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

+ 72
(1 −

√

𝜌)2
𝛾2𝑛𝐿2

𝐾−1
∑

𝑘=0
E�̂�𝑘

y rearranging the terms we obtain
(

1 − 72
(1 −

√

𝜌)2
𝛾2𝑛𝐿2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈1

𝐾−1
∑

𝑘=0
E�̂�𝑘

≤ 2𝑛𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 12
(1 −

√

𝜌)2
𝑛𝛾2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

.

hen 𝑈1 is greater than 0, we divide both sides of this equation by 𝑈1
nd get Lemma 4. □

Employing the above lemmas, we now present the details of the
roof of Theorem 1.

roof. First, by expanding 𝑋𝑘+1 with the model update formula,
e can establish the relationship between models and the gradients.
ccording to Assumption 2 𝑓 (⋅) is L-smooth and Assumption 2 𝑊 is a
𝑘

170
oubly stochastic matrix, we have

𝑓
(

𝑋𝑘+1𝟏𝑛
𝑛

)

= E𝑓

(

𝑋𝑘𝑊𝑘𝟏𝑛
𝑛

− 𝛾
𝜕𝐹 (�̂�𝑘; 𝜉𝑘)𝟏𝑛

𝑛

)

= E𝑓

(

𝑋𝑘𝟏𝑛
𝑛

− 𝛾
𝜕𝐹 (�̂�𝑘; 𝜉𝑘)𝟏𝑛

𝑛

)

≤ E𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

− 𝛾E

⟨

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

,
𝜕𝐹 (�̂�𝑘; 𝜉𝑘)𝟏𝑛

𝑛

⟩

+
𝛾2𝐿
2

E
‖

‖

‖

‖

‖

𝜕𝐹 (�̂�𝑘; 𝜉𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

= E𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

− 𝛾E

⟨

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

,
𝜕𝐹 (�̂�𝑘; 𝜉𝑘)𝟏𝑛

𝑛

⟩

+
𝛾2𝐿
2

E
‖

‖

‖

‖

‖

∑𝑛
𝑖=1 ∇𝐹𝑖(�̂�𝑘𝑖 , 𝜉

𝑘
𝑖)

𝑛

‖

‖

‖

‖

‖

2

.

(12)

We establish the relationship between the gradients of the loss functions
and the gradients of the expected loss functions. For the last term,
according to Assumption 2, we have

E
‖

‖

‖

‖

‖

∑𝑛
𝑖=1 ∇𝐹𝑖(�̂�𝑘𝑖 , 𝜉

𝑘
𝑖)

𝑛

‖

‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

∑𝑛
𝑖=1 ∇𝐹𝑖(�̂�𝑘𝑖 , 𝜉

𝑘
𝑖) −

∑𝑛
𝑖=1 ∇𝑓𝑖(�̂�

𝑘
𝑖 , 𝜉

𝑘
𝑖)

𝑛

‖

‖

‖

‖

‖

2

+ E
‖

‖

‖

‖

‖

∑𝑛
𝑖=1 ∇𝑓𝑖(�̂�

𝑘
𝑖 , 𝜉

𝑘
𝑖)

𝑛

‖

‖

‖

‖

‖

2

≤ 𝜎2

𝑛
+ E

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

(13)

Based on the fact that 2⟨𝑎, 𝑏⟩ = ‖𝑎‖2 + ‖𝑏‖2 − ‖𝑎 − 𝑏‖2 and putting (13)
back to (12) we have

E𝑓
(

𝑋𝑘+1𝟏𝑛
𝑛

)

≤ E𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

+
𝛾
2
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

−
𝜕𝑓 (�̂�𝑘)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

2

−
𝛾 − 𝛾2𝐿

2
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

−
𝛾
2
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

+
𝛾2𝜎2𝐿
2𝑛

.

(14)

For the second term on the right side of (14), we have

E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

−
𝜕𝑓 (�̂�𝑘)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

2

≤ 2E
‖

‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

− ∇𝑓

(

�̂�𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

‖

2

+ 2E
‖

‖

‖

‖

‖

‖

∇𝑓

(

�̂�𝑘𝟏𝑛
𝑛

)

−
𝜕𝑓 (�̂�𝑘)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

‖

2

≤ 2E
‖

‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

− ∇𝑓

(

�̂�𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

‖

2

+ 2E
‖

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑖=1
(∇𝑓𝑖

(

�̂�𝑘𝟏𝑛
𝑛

)

− ∇𝑓𝑖(�̂�𝑘𝑖))
‖

‖

‖

‖

‖

‖

2

≤ 2𝐿2E
‖

‖

‖

(𝑋𝑘 − �̂�𝑘)𝟏𝑛 ‖‖
‖

2

+ 2𝐿2E�̂�𝑘.

(15)
‖

‖

𝑛 ‖

‖

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

F

E

E

f

T
i

𝛾

t
f

D
𝑖

o

A
i

E

For the first term on the right of (15), we have

E
‖

‖

‖

‖

‖

(𝑋𝑘 − �̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

‖

∑𝜏𝑘
𝑡=1 𝛾𝜕𝐹 (�̂�𝑘−𝑡; 𝜉𝑘−𝑡)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

‖

2

≤ 𝜏𝑘
𝜏𝑘
∑

𝑡=1
𝛾2E

‖

‖

‖

‖

‖

𝜕𝐹 (�̂�𝑘−𝑡; 𝜉𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤ 𝜏𝑘
𝜏𝑘
∑

𝑡=1
𝛾2

(

𝜎2

𝑛
+ E

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2)

=
𝜏2𝑘𝛾

2𝜎2

𝑛
+ 𝜏𝑘𝛾

2
𝜏𝑘
∑

𝑡=1
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

(16)

rom (14), (15) and (16) we have

𝑓
(

𝑋𝑘+1𝟏𝑛
𝑛

)

≤ E𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

−
𝛾
2
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

+ 𝛾𝐿2E�̂�𝑘

−
𝛾 − 𝛾2𝐿

2
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+
𝛾2𝜎2𝐿
2𝑛

+
𝜏2𝛾3𝜎2𝐿2

𝑛

+ 𝜏𝛾3𝐿2
𝜏𝑘
∑

𝑡=1
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

Summing 𝑘 from 0 to 𝐾 − 1 we obtain

E𝑓
(

𝑋𝐾𝟏𝑛
𝑛

)

≤ E𝑓
(

𝑋0𝟏𝑛
𝑛

)

−
𝛾
2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

−
(

𝛾 − 𝛾2𝐿
2

− 𝜏𝛾3𝐿2
)𝐾−1

∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+ 𝛾𝐿2
𝐾−1
∑

𝑘=0
E�̂�𝑘 +

𝛾2𝜎2𝐿𝐾
2𝑛

+
𝜏2𝛾3𝜎2𝐿2𝐾

𝑛
.

We can use Lemma 4 to replace the term with �̂�𝑘. Let 𝑈2 = 𝛾−𝛾2𝐿
2 −

𝜏𝛾3𝐿2 − 12𝑛𝛾3𝐿2

(1−
√

𝜌)2𝑈1
and we obtain

𝑓
(

𝑋𝐾𝟏𝑛
𝑛

)

≤ E𝑓
(

𝑋0𝟏𝑛
𝑛

)

+
𝛾2𝜎2𝐿𝐾

2𝑛
+

𝜏2𝛾3𝜎2𝐿2𝐾
𝑛

−
𝛾
2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

∇𝑓 (
𝑋𝑘𝟏𝑛
𝑛

)
‖

‖

‖

‖

2
− 𝑈2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+ 2𝑛𝛾3𝐿2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾
𝑈1

.

Note that E𝑓 (𝑥0) = 𝑓 (0) = 𝑓0 because we assume that all workers start
rom 0, and E𝑓 (𝑋𝐾𝟏𝑛

𝑛) ≥ 𝑓⋆ where 𝑓⋆ is the optimal solution. So by
arranging the terms and dividing both sides of the inequality by 𝐾,
while 𝑈1 > 0 and 𝑈2 ≤ 0 are satisfied Theorem 1 is proved. □

Next, we give the proof of Corollary 1.

Proof. The conditions of Theorem 1 are 𝑈1 > 0 and 𝑈2 ≤ 0, and we
can choose appropriate 𝛾 to satisfy these conditions. At first, we can let
𝑈1 ≥ 1∕2 which is a stronger restriction on 𝑈1 and we can obtain

𝑈1 = (1 − 72
(1 −

√

𝜌)2
𝛾2𝑛𝐿2) ≥ 1

2
⇒ 𝛾 ≤

1 −
√

𝜌

12𝐿
√

𝑛
.

So when 𝑈1 ≥
1
2 and 𝑈2 ≥ 0, we can imply the following result:

𝑈2 ≥
𝛾 − 𝛾2𝐿

2
− 𝜏𝛾3𝐿2 −

24𝑛𝛾3𝐿2

(1 −
√

𝜌)2
≥ 0

𝛾>0
⇒

𝛾𝐿
+ 𝜏𝛾2𝐿2 +

24𝑛𝛾2𝐿2
√ 2

≤ 1 .
(17)
2 (1 − 𝜌) 2 w

171
o satisfy (17), we can make every term on the left side of the
nequality smaller than 1

6 :

𝛾𝐿
2

≤ 1
6
⇒ 𝛾 ≤ 1

3𝐿
,

𝜏𝛾2𝐿2 ≤ 1
6
⇒ 𝛾 ≤ 1

√

6𝜏𝐿
,

24𝑛𝛾2𝐿2

(1 −
√

𝜌)2
≤ 1

6
⇒ 𝛾 ≤

1 −
√

𝜌

12𝐿
√

𝑛
.

Combining all the constraints on 𝛾 we have

≤ min

{

1
3𝐿

, 1
√

6𝜏𝐿
,
1 −

√

𝜌

12𝐿
√

𝑛

}

.

Let 𝛾 = 1

𝐿+
√

𝜎2+6𝜍2
√

𝐾
𝑛

and from Theorem 1 we have

1
𝐾

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

∇𝑓 (
𝑋𝑘𝟏𝑛
𝑛

)
‖

‖

‖

‖

2

≤
2(𝑓0 − 𝑓 ∗)𝐿

𝐾
+

2(𝑓0 − 𝑓 ∗)
√

𝜎2 + 6𝜍2
√

𝑛𝐾
+ 𝜎𝐿

√

𝑛𝐾

+ 2𝜏2𝐿2

𝐾
+ 4𝑛2𝐿2

𝐾𝑈1

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

=
2(𝑓0 − 𝑓 ∗ + 𝜏2𝐿)𝐿

𝐾
+

(2𝑓0 − 2𝑓 ∗ + 𝐿)
√

𝜎2 + 6𝜍2
√

𝑛𝐾

+
4
√

𝜎2 + 6𝜍2𝐿
√

𝑛𝐾

2𝑛
5
2 𝐿

√

𝜎2 + 6𝜍2
√

𝐾

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈3

.

Now if 𝑈3 ≤ 1 is satisfied we conclude Corollary 1. When 𝑈3 ≤ 1 we
have

2𝑛
5
2 𝐿

√

𝜎2 + 6𝜍2
√

𝐾

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

≤ 1.

Converting to the constraints on 𝐾, we can get

𝐾 ≥ 4𝑛5𝐿2

𝜎2 + 6𝜍2

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)2

.

In the end, converting all other constraints on 𝛾 to constraints on 𝐾:

𝐾 ≥ 𝑛
𝜎2 + 6𝜍2

max

{

4𝐿2, (
√

6𝜏 − 1)2𝐿2, 144𝑛𝐿2

(1 −
√

𝜌)2

}

.

Now we have concluded Corollary 1. □

5. Noise robust decentralized SGD

Algorithm 1 is designed to deal with the issue of unstable network
connections. In addition to this case, the communication between
workers usually is perturbed by noise. During model aggregation, noise
is often introduced via wireless channel noise, gradient compression, or
purposefully imposed privacy protection mechanisms. Let 𝑄(𝑥𝑘𝑖) denote
he perturbed model of worker 𝑖 at iteration 𝑘. At first, we give the
ollowing definition.

efinition 1. For any 𝑥, 𝑦 ∈ R𝑑 , we define that 𝑥 ≤ 𝑦 ⟺ 𝑥𝑖 ≤ 𝑦𝑖 for
∈ [1,… , 𝑑], where 𝑥𝑖 and 𝑦𝑖 denote the 𝑖th dimension of 𝑥 and 𝑦.

To better bound the gap between the perturbed model and the
riginal model, we give the following assumption.

ssumption 3 (Bounded Noise). We assume that the perturbed model
s bounded and for all 𝑥 ∈ R𝑑 , they satisfy

𝑄(𝑥) ≤ 𝑐𝑥 (18)

here 𝑐 is a constant and 𝑐 > 0.

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

t
I
p
a

p
o
d
d

b
e

5

m

𝑄

w

R

5

p

e

T
s

F
a

L

Algorithm 2: NRDSGD algorithm
Input: Initialize 𝑥0𝑖 , �̂�

0
𝑖 and 𝑄(𝑥0𝑖), ∀𝑖 ∈ [𝑛] with the same value,

mixing matrix 𝑊 , learning rate 𝛾, variance of Gaussian
distribution 𝜎𝑔 and number of total iterations 𝐾.

1 for 𝑘 = 0, 1,… , 𝐾 − 1(all workers in parallel) do
2 Randomly sample 𝜉𝑘𝑖 from local data for worker 𝑖 ∈ [𝑛].
3 Compute gradient ∇𝐹 (𝑥𝑘𝑖 , 𝜉

𝑘
𝑖).

4 Update model according to 𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 − 𝛾∇𝐹 (𝑥𝑘𝑖 , 𝜉
𝑘
𝑖).

5 Sample noise 𝜂𝑘+1𝑖 from Gaussian distribution (0, 𝜎2𝑔) and
compute the perturbed model 𝑄(𝑥𝑘+1𝑖).

6 Send 𝑄(𝑥𝑘+1𝑖) and receive models from neighbors.
7 if receive any 𝑄(𝑥𝑘+1𝑗), 𝑗 ∈ 𝑖 then
8 �̂�𝑘+1𝑗 = 𝑄(𝑥𝑘+1𝑗).

9 Aggregate model by 𝑥𝑘+1𝑖 =
∑

𝑗∈𝑖 𝑊𝑖𝑗 �̂�𝑘+1𝑗 .

Assumption 3 requires that the value at any dimension of the per-
urbed model will not deviate the original model too far in expectation.
n a high level, Assumption 3 gives a bound to guarantee that the
erturbed model may only oscillate on the basis of the original model
nd the degree of oscillation is bounded by parameter 𝑐.

In fact, the presence of noise is a common phenomenon in the
rocess of model exchange. In the problem we are studying, the sources
f noise can be divided into two categories. One is artificially intro-
uced noise caused by communication compression mechanisms or
ifferential privacy(DP) mechanisms.

• Communication compression. In this case, 𝑄(𝑥) can be considered
as the compressed model. If we do not pay attention to the
specific communication compression method, then the compres-
sion operators can be considered as artificial noise added to the
model [11,13]. This kind of communication compression noise
usually makes the perturbed model smaller than the original
model, that is, the parameter 𝑐 is less than 1 in this case.

• Differential privacy (DP). DP mechanisms usually add noise to the
data to prevent privacy leakage caused by queries on adjacent
data sets. Commonly used DP mechanisms are Gaussian mecha-
nism and Laplace mechanism [16,36]. DP mechanisms bound the
noise based on the privacy precise so the amount of added noise
is limited by the level of privacy protection.

In addition to the artificially introduced noise, there will inevitably
be some noise in the communication process. In the real channel, a
common type of noise is Gaussian noise which follows the Gaussian
distribution with a mean value of 0. Therefore, we add Gaussian noise
in the model exchange process to simulate the real scene: 𝑄(𝑥) = 𝑥+ 𝜂,
where 𝜂 ∈ R𝑑 and 𝜂𝑖 ∼ (0, 𝜎2𝑔),∀𝑖 ∈ [0,… .𝑑] is the Gaussian distri-
ution. Definitely, this Gaussian noise meets Assumption 3 because the
xpectation of noise is 0.

.1. Algorithm

To imitate genuine data interchange, we introduce noise to the
odel to be exchanged:

(𝑥𝑘+1𝑖) = 𝑥𝑘+1𝑖 + 𝜂𝑘+1𝑖

here 𝜂𝑘+1𝑖 ∼ (0, 𝜎2𝑔) is the Gaussian distribution and 𝑄(𝑥𝑘+1𝑖) is
the perturbed model. Thus we obtain the Algorithm 2 NRDSGD–Noise

obust Decentralized Stochastic Gradient Descent.

.2. Theoretical analysis

Based on our Assumption 3, the data to be exchanged has been
𝑘 𝑘−𝜏𝑘
erturbed by noise, thus �̂�𝑖 would become 𝑄(𝑥𝑖). Written in matrix

172
form we have:

�̂�𝑘 = 𝑄(𝑋𝑘−𝜏𝑘) = [�̂�𝑘1 ,… , �̂�𝑘𝑛] ∈ R𝑑×𝑛.

Before presenting Theorem 2, we define the following variables:

𝜌 =

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

,

𝑉1 =
(

1 − 24𝑛𝑐2𝛾2𝐿2) 𝜌,

𝑉2 =
(

𝛾 − 𝛾2𝐿
2

−
∼
𝑐
2
𝜏𝛾3𝐿2 −

4𝑛𝑐2𝛾3𝐿2𝜌
𝑉1

)

.

These variables are constants, which are defined to simplify the final
xpression.

heorem 2. Under Assumptions 1, 2 and 3, if 𝑉1 > 0 and 𝑉2 ≥ 0 are
atisfied, then we have the following convergence rate
𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

≤
2(𝑓0 − 𝑓⋆)

𝛾𝐾

+
𝛾𝜎2𝐿
𝑛

+
2
∼
𝑐
2
𝜏2𝛾2𝜎2𝐿2

𝑛
+

4𝑛𝑐2𝛾2𝐿2(𝜎2 + 6𝜍2)𝜌
𝑉1

,

where
∼
𝑐 = max{1, 𝑐}, 𝑓0 = 𝑓 (0) and 𝑓⋆ denotes the optimal solution.

Choosing an appropriate learning rate, we can get the following
corollary

Corollary 2. Under Assumptions 1, 2 and 3, by choosing 𝛾 =
1

𝐿+
√

𝜎2+6𝜍2
√

𝐾
𝑛

, we have the following convergence rate

1
𝐾

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

≤
2(𝑓0 − 𝑓⋆ +

∼
𝑐
2
𝜏2𝐿)𝐿

𝐾

+
(2𝑓0 − 2𝑓⋆ + (4𝑐2 + 1)𝐿)

√

𝜎2 + 6𝜍2
√

𝑛𝐾
,

if 𝐾 is large enough to satisfy

𝐾 ≥ 𝑛𝐿2

𝜎2 + 6𝜍2
max

{

4, (
∼
𝑐
√

6𝜏 − 1)2, 4𝑛4𝜌2, 48𝑐2𝜌
}

,

where
∼
𝑐, 𝑓0 and 𝑓⋆ follows the definition in Theorem 2.

Theorem 2 and Corollary 2 demonstrate that NRDSGD achieves the
same convergence rate and maintains the same properties comparing to
RDSGD. Moreover, the effect of communication noise is reflected on the
constant 𝑐. It shows that communication noise have the similar effect
with the unstable workers, which may lower down the precise.

5.3. Analysis of Algorithm 2

In this part, we give theoretical support for Theorem 2 in detail.
Similarly to our proof of Theorem 1, we have the same definition of
𝑀𝑘. But due to that �̂�𝑘 becomes 𝑄(𝑋𝑘−𝜏𝑘), so we have

�̂�𝑘 ∶= 1
𝑛

𝑛
∑

𝑖=1

‖

‖

‖

‖

‖

𝑄(𝑋𝑘−𝜏𝑘)𝟏𝑛
𝑛

−𝑄(𝑋𝑘−𝜏𝑘)𝑒𝑖
‖

‖

‖

‖

‖

2

.

or Lemmas 1–3, we do not use the definition of �̂�𝑘, so these lemmas
re still worked in this case.

emma 5. Let 𝑉1 =
(

1 − 24𝑛𝑐2𝛾2𝐿2
(

1
1−𝜌 + 2

(1−
√

𝜌)2

))

and for any
𝐾 ≥ 1 if 𝑉1 > 0

E�̂� ≤ 2𝑛𝑐2𝛾2𝐾
𝑉1

(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+
4𝑛𝑐2𝛾2

(

1 + 2
√ 2

)𝐾−1
∑

E
‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛 ‖‖
‖

‖

2

.

𝑉1 1 − 𝜌 (1 − 𝜌) 𝑘=0 ‖

𝑛
‖

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

N

E

S

S
i

C

E

E

Proof. Under the Assumption 3 and Lemma 3, we have

E
‖

‖

‖

‖

𝑄(𝑋𝑘+1)𝟏𝑛
𝑛

−𝑄(𝑋𝑘+1)𝑒𝑖
‖

‖

‖

‖

2

≤ 𝑐2E
‖

‖

‖

‖

𝑋𝑘+1𝟏𝑛
𝑛

−𝑋𝑘+1𝑒𝑖
‖

‖

‖

‖

2

≤ 2𝑛𝑐2𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

+ 4𝑛𝑐2𝛾2
𝑘
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
⎛

⎜

⎜

⎝

𝜌𝑘−𝑗 +
2
√

𝜌𝑘−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝑛𝑐2𝛾2𝐿2
𝑘
∑

𝑗=0
E�̂�𝑗

⎛

⎜

⎜

⎝

𝜌𝑘−𝑗 +
2
√

𝜌𝑘−𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

.

ote the definition of �̂�𝑘, we have

�̂�𝑘 = E1
𝑛

𝑛
∑

𝑖=1

‖

‖

‖

‖

‖

𝑄(𝑋𝑘−𝜏𝑘)𝟏𝑛
𝑛

−𝑄(𝑋𝑘−𝜏𝑘)𝑒𝑖
‖

‖

‖

‖

‖

2

= 1
𝑛

𝑛
∑

𝑖=1
E
‖

‖

‖

‖

‖

𝑄(𝑋𝑘−𝜏𝑘)𝟏𝑛
𝑛

−𝑄(𝑋𝑘−𝜏𝑘)𝑒𝑖
‖

‖

‖

‖

‖

2

≤ 2𝑛𝑐2𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

+ 4𝑛𝑐2𝛾2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝑗−𝜏𝑘−1

+ 4𝑛𝑐2𝛾2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
2
√

𝜌𝑘−𝑗−𝜏𝑘−1

1 −
√

𝜌

+ 24𝑛𝑐2𝛾2𝐿2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
(

�̂�𝑗𝜌
𝑘−𝑗−𝜏𝑘−1

)

+ 24𝑛𝑐2𝛾2𝐿2
𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

�̂�𝑗
2
√

𝜌𝑘−𝑗−𝜏𝑘−1

1 −
√

𝜌

⎞

⎟

⎟

⎠

.

umming from 𝑘 = 0 to 𝐾 − 1, we have

𝐾−
∑

𝑘=0
E�̂�𝑘 ≤ 2𝑛𝑐2𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 4𝑛𝑐2𝛾2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2

𝜌𝑘−𝑗−𝜏𝑘−1
⎞

⎟

⎟

⎠

+ 4𝑛𝑐2𝛾2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑗)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

‖

2
2
√

𝜌𝑘−𝑗−𝜏𝑘−1

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝑛𝑐2𝛾2𝐿2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E
(

�̂�𝑗𝜌
𝑘−𝑗−𝜏𝑘−1

)

+ 24𝑛𝑐2𝛾2𝐿2
𝐾−1
∑

𝑘=0

𝑘−𝜏𝑘−1
∑

𝑗=0
E
⎛

⎜

⎜

⎝

�̂�𝑗
2
√

𝜌𝑘−𝑗−𝜏𝑘−1

1 −
√

𝜌

⎞

⎟

⎟

⎠

umming the terms containing 𝜌 and reducing them using the sum of
nfinite series, we obtain

𝐾−
∑

𝑘=0
E�̂�𝑘 ≤ 2𝑛𝑐2𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 4𝑛𝑐2𝛾2
𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2
⎛

⎜

⎜

⎝

∞
∑

𝑗=0
𝜌𝑗 +

2
∑∞

𝑗=0
√

𝜌𝑗

1 −
√

𝜌

⎞

⎟

⎟

⎠

+ 24𝑛𝑐2𝛾2𝐿2
𝐾−1
∑

E�̂�𝑗

⎛

⎜

⎜

∞
∑

𝜌𝑗 +
2
∑∞

𝑗=0
√

𝜌𝑗

1 −
√

𝜌

⎞

⎟

⎟

𝑘=0
⎝

𝑗=0
⎠

173
≤ 2𝑛𝑐2𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 4𝑛𝑐2𝛾2
(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+ 24𝑛𝑐2𝛾2𝐿2

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)𝐾−1
∑

𝑘=0
E�̂�𝑘.

By rearranging the terms we obtain
(

1 − 24𝑛𝑐2𝛾2𝐿2

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

))𝐾−1
∑

𝑘=0
E�̂�𝑘

≤ 2𝑛𝑐2𝛾2(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+ 4𝑛𝑐2𝛾2
(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

Let 𝑉1 =
(

1 − 24𝑛𝑐2𝛾2𝐿2
(

1
1−𝜌 + 2

(1−
√

𝜌)2

))

and if 𝑉1 > 0 we have

𝐾−1
∑

𝑘=0
E�̂�𝑘 ≤ 2𝑛𝑐2𝛾2𝐾

𝑉1
(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+
4𝑛𝑐2𝛾2

𝑉1

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

. □

Now we can start to prove Theorem 2.

Proof. The proof is the same as Theorem 1, the only difference is the
definition of �̂�𝑘, so we can directly start from (15) to prove. According
to Assumption 3, for the first term on the right side of (15), we have

E
‖

‖

‖

‖

‖

(𝑋𝑘 − �̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

(𝑄(𝑋𝑘−𝜏𝑘) −𝑋𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤ E
‖

‖

‖

‖

‖

(𝑐𝑋𝑘−𝜏𝑘 −𝑋𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

Next, we analyze two cases: (1) 0 < 𝑐 ≤ 1, and (2) 𝑐 > 1.

ase 1: if 0 < 𝑐 ≤ 1, then 𝑐𝑋𝑘−𝜏𝑘 −𝑋𝑘 ≤ 𝑋𝑘−𝜏𝑘 −𝑋𝑘. Thus we have

‖

‖

‖

‖

‖

(𝑋𝑘 − �̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤ E
‖

‖

‖

‖

‖

(𝑋𝑘−𝜏𝑘 −𝑋𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

= E
‖

‖

‖

‖

‖

‖

∑𝜏𝑘
𝑡=1 𝛾𝜕𝐹 (�̂�𝑘−𝑡; 𝜉𝑘−𝑡)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

‖

2

≤ 𝜏𝑘
𝜏𝑘
∑

𝑡=1
𝛾2E

‖

‖

‖

‖

‖

𝜕𝐹 (�̂�𝑘−𝑡; 𝜉𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤ 𝜏𝑘
𝜏𝑘
∑

𝑡=1
𝛾2

(

𝜎2

𝑛
+ E

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2)

=
𝜏2𝑘𝛾

2𝜎2

𝑛
+ 𝜏𝑘𝛾

2
𝜏𝑘
∑

𝑡=1
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

Case 2: if 𝑐 > 1, then 𝑐𝑋𝑘−𝜏𝑘 −𝑋𝑘 ≤ 𝑐(𝑋𝑘−𝜏𝑘 −𝑋𝑘). Thus we have

‖

‖

‖

‖

‖

(𝑋𝑘 − �̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤ 𝑐2E
‖

‖

‖

(𝑋𝑘−𝜏𝑘 −𝑋𝑘)𝟏𝑛 ‖
‖

‖

2

‖

‖

𝑛 ‖

‖

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

C

N

o

p

P

𝛾

= 𝑐2E
‖

‖

‖

‖

‖

‖

∑𝜏𝑘
𝑡=1 𝛾𝜕𝐹 (�̂�𝑘−𝑡; 𝜉𝑘−𝑡)𝟏𝑛

𝑛

‖

‖

‖

‖

‖

‖

2

≤ 𝑐2𝜏𝑘
𝜏𝑘
∑

𝑡=1
𝛾2E

‖

‖

‖

‖

‖

𝜕𝐹 (�̂�𝑘−𝑡; 𝜉𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤ 𝑐2𝜏𝑘
𝜏𝑘
∑

𝑡=1
𝛾2

(

𝜎2

𝑛
+ E

‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2)

=
𝑐2𝜏2𝑘𝛾

2𝜎2

𝑛
+ 𝑐2𝜏𝑘𝛾

2
𝜏𝑘
∑

𝑡=1
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

ombining the two cases and let
∼
𝑐 = max{1, 𝑐}, we have

E
‖

‖

‖

‖

‖

(𝑋𝑘 − �̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

≤
∼
𝑐
2
𝜏2𝑘𝛾

2𝜎2

𝑛
+

∼
𝑐
2
𝜏𝑘𝛾

2
𝜏𝑘
∑

𝑡=1
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

(19)

From (14) (15) and (19) we obtain

E𝑓
(

𝑋𝑘+1𝟏𝑛
𝑛

)

≤ E𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

−
𝛾
2
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

+ 𝛾𝐿2E�̂�𝑘

−
𝛾 − 𝛾2𝐿

2
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+
∼
𝑐
2
𝜏2𝛾3𝜎2𝐿2

𝑛

+
𝛾2𝜎2𝐿
2𝑛

+
∼
𝑐
2
𝜏𝛾3𝐿2

𝜏𝑘
∑

𝑡=1
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘−𝑡)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

.

Summing from 𝑘 = 0 to 𝐾 −1 and substitute the inequality of Lemma 5
into the above inequality, we obtain

E𝑓
(

𝑋𝐾𝟏𝑛
𝑛

)

≤ E𝑓
(

𝑋0𝟏𝑛
𝑛

)

−
𝛾
2

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

−
(

𝛾 − 𝛾2𝐿
2

−
∼
𝑐
2
𝜏𝛾3𝐿2

)𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+
2𝑛𝑐2𝛾3𝐿2𝐾

𝑉1
(𝜎2 + 6𝜍2)

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)

𝐾

+
4𝑛𝑐2𝛾3𝐿2

𝑉1

(

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2

)𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

𝜕𝑓 (�̂�𝑘)𝟏𝑛
𝑛

‖

‖

‖

‖

‖

2

+
𝛾2𝜎2𝐿𝐾

2𝑛
+

∼
𝑐
2
𝜏2𝛾3𝜎2𝐿2𝐾

𝑛
.

ote that all models start from 0, thus let 𝑓0 denote 𝑓 (0) and 𝑓⋆

denote the optimal solution. Let 𝑉2 =
(

𝛾−𝛾2𝐿
2 −

∼
𝑐
2
𝜏𝛾3𝐿2 − 4𝑛𝑐2𝛾3𝐿2

𝑉1
(

1
1−𝜌 + 2

(1−
√

𝜌)2

))

and rearrange the terms then we complete the proof
f Theorem 2. □

The proof of Corollary 2 is similar to Corollary 1, and we give the
roof of Corollary 2 in the following part.

roof. We first guarantee 𝑉1 ≥ 0. We make 𝑉1 ≥
1
2 which is a stronger

restriction on 𝑉1 and we can obtain

𝑉1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

1 − 24𝑛𝑐2𝛾2𝐿2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

1
1 − 𝜌

+ 2
(1 −

√

𝜌)2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎞

⎟

⎟

⎟

⎟

⎟

⎟

≥ 1
2

⎝ ⎝
𝜌

⎠⎠

174
Converting to constraints on 𝛾 we get 𝛾2 ≤ 1
48𝑛𝑐2𝐿2𝜌

. So when 𝑉1 ≥ 1
2

and 𝑉2 ≥ 0, we can imply the following result:

𝑉2 =
𝛾 − 𝛾2𝐿

2
−

∼
𝑐
2
𝜏𝛾3𝐿2 − 8𝑛𝑐2𝛾3𝐿2𝜌 ≥ 0

𝛾>0
⇒

1
2
−

𝛾𝐿
2

−
∼
𝑐
2
𝜏𝛾2𝐿2 − 8𝑛𝑐2𝛾2𝐿2𝜌 ≥ 0

⇒
𝛾𝐿
2

+
∼
𝑐
2
𝜏𝛾2𝐿2 + 8𝑛𝑐2𝛾2𝐿2𝜌 ≤ 1

2
.

(20)

To satisfy Eq. (20), we can make every term on the left side of the
inequality smaller than 1

6 :

𝛾𝐿
2

≤ 1
6
⇒ 𝛾 ≤ 1

3𝐿
,

∼
𝑐
2
𝜏𝛾2𝐿2 ≤ 1

6
⇒ 𝛾 ≤ 1

∼
𝑐𝐿

√

6𝜏
,

8𝑛𝑐2𝛾2𝐿2𝜌 ≤ 1
6
⇒ 𝛾 ≤ 1

4𝑐𝐿
√

3𝑛𝜌
.

Combining all the constraints on 𝛾 we have

≤ min

{

1
3𝐿

, 1
∼
𝑐𝐿

√

6𝜏
, 1
4𝑐𝐿

√

3𝑛𝜌

}

.

Let 𝛾 = 1

𝐿+
√

𝜎2+6𝜍2
√

𝐾
𝑛

and from Theorem 2 we have

1
𝐾

𝐾−1
∑

𝑘=0
E
‖

‖

‖

‖

‖

∇𝑓
(

𝑋𝑘𝟏𝑛
𝑛

)

‖

‖

‖

‖

‖

2

≤
2(𝑓0 − 𝑓 ∗)

𝛾𝐾
+

𝛾𝜎2𝐿
𝑛

+
2
∼
𝑐
2
𝜏2𝛾2𝜎2𝐿2

𝑛

+
4𝑛𝑐2𝛾2𝐿2(𝜎2 + 6𝜍2)𝜌

𝑉1

≤
2(𝑓0 − 𝑓 ∗)𝐿

𝐾
+

2(𝑓0 − 𝑓 ∗)
√

𝜎2 + 6𝜍2
√

𝑛𝐾
+ 𝜎𝐿

√

𝑛𝐾

+ 2
∼
𝑐
2
𝜏2𝐿2

𝐾
+

4𝑛2𝑐2𝐿2𝜌
𝐾𝑉1

=
2(𝑓0 − 𝑓 ∗ +

∼
𝑐
2
𝜏2𝐿)𝐿

𝐾
+

(2𝑓0 − 2𝑓 ∗ + 𝐿)
√

𝜎2 + 6𝜍2
√

𝑛𝐾

+
4𝑐2

√

𝜎2 + 6𝜍2𝐿
√

𝑛𝐾

2𝑛
5
2 𝐿𝜌

√

𝜎2 + 6𝜍2
√

𝐾
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑉3

.

While 𝑉3 ≤ 1, we complete the proof of Corollary 2. Thus we have

2𝑛
5
2 𝐿𝜌

√

𝜎2 + 6𝜍2
√

𝐾
≤ 1 ⇒ 𝐾 ≥ 4𝑛5𝐿2𝜌2

𝜎2 + 6𝜍2
.

In the end, converting the constraints on 𝛾 to constraints on 𝐾, we
have

𝛾 = 1

𝐿 +
√

𝜎2 + 6𝜍2
√

𝐾
𝑛

≤ min

{

1
3𝐿

, 1
∼
𝑐𝐿

√

6𝜏
, 1
4𝑐𝐿

√

3𝑛𝜌

}

⇔ 𝐿 +
√

𝜎2 + 6𝜍2
√

𝐾
𝑛

≥ max
{

3𝐿,
∼
𝑐𝐿

√

6𝜏, 4𝑐𝐿
√

3𝑛𝜌
}

⇒ 𝐾 ≥ 𝑛𝐿2

𝜎2 + 6𝜍2
max

{

4, (
∼
𝑐
√

6𝜏 − 1)2, 48𝑛𝑐2𝜌
}

.

Combining all the conditions, we complete the proof of Corollary 2. □

6. Experiments

We evaluate our decentralized learning algorithms experimentally
and compare our algorithms with DPSGD [7] over stable networks

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

t
o
i

l
i
n
o

𝑊

8
o
c
a
a
c
t
l
b
b
t
a
1

Fig. 1. Effect of network instability on ResNet18.

o show the influence of unstable workers and communication noise
n decentralized SGD. We mainly explore the influence of network
nstability 𝜏 and the level of noise 𝑐 on the algorithm performance.

6.1. Experimental setup

Dataset and Models In our experiments, we validate our algo-
rithm on the image classification task. We choose CIFAR10 [37] as
our dataset. CIFAR10 contains a total of 10 categories of RGB color
images, and each category has 6,000 images. We use ResNet [38] with
different layers as our model and PyTorch as our distributed learning
framework. Specifically, Python 3.6 and Pytorch 1.9.0 are adopted in
our experiments.

Implementation We train the model on Intel(R) Xeon(R) CPU E5-
2699C v4 @ 2.20 GHz and use CPU multiprocess to simulate different
workers. To implement multiprocess parallelism, our communication
scheme is the torch.distributed module, which implements CPU com-
munication through MPI and GPU communication through NCCL. We
mainly explore the effect of 𝜏 and 𝑐 on the algorithm performance. Here
are some settings that are the same for both cases. We set epoch is
160 and weight decay is 0.0001. For learning rate, adopting the linear
scaling rule as described in [2], we set learning rate decay of 10 percent
 o

175
at the 80th and the 120th epoch, respectively, to achieve a more precise
convergence. Based on our theoretical analysis, the value of 𝛾 is related
to 𝑛 and 𝐾. Thus, we would discuss the initial value of 𝛾 in detail
later. Also, we do not apply any momentum and regularization to be
consistent with our algorithm and theoretical analysis.

Unstable Setting As declared in Section 3, we use 𝜏 to represent
the degree of network instability. A larger 𝜏 means that offline workers
need more time to reconnect, which leads to longer time to get a global
consensus. Note that 𝜏 = 0 means that the network is stable and the
algorithm we compared is DPSGD under a stable network.

Noise Mechanism Under Assumption 3 and our noise mechanism,
we use parameter 𝑐 to measure the gap between the perturbed model
and the original model so we mainly compare the effect of parameter
𝑐. A larger 𝑐 means that more noise is introduced and the perturbed
model is further away from the original model.

Network Topology During our experiment, we choose the ring
network, which is commonly used in distributed learning. The structure
of the ring network is all workers are connected end to end in a loop.
Therefore each worker only has and can communicate with two neigh-
bors. Based on the ring topology, we use the Metropolis–Hastings(MH)
algorithm proposed by [39] to construct the doubly stochastic matrix
𝑊 . MH algorithm is described as follows:

𝑊 [𝑖𝑗] =

⎧

⎪

⎨

⎪

⎩

max(𝑑𝑖, 𝑑𝑗) if 𝑖 ≠ 𝑗 and 𝑗 ∈ 𝑖

1 −
∑

𝑗∈𝑖 if 𝑖 = 𝑗
0 otherwise,

where 𝑑𝑖 and 𝑑𝑗 are the degrees of worker 𝑖 and worker 𝑗. Note that we
et degree of a worker denotes the number of neighbors and the worker
tself which indicates that each worker aggregates the models with all
eighbors and itself. Thus, when the network topology is a ring, we
btain the following mixing matrix:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
3

1
3 0 ⋯ 0 1

3
1
3

1
3

1
3 0

0 1
3

1
3 ⋱ ⋮

⋮ ⋱ ⋱ 1
3 0

0 1
3

1
3

1
3

1
3 0 ⋯ 0 1

3
1
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×𝑛

In the last, we summarize all the hyperparameter settings used in
the experiments in the following

• Batch size: 256 per worker for ResNet.
• Epoch: 160.
• Number of workers: 4 and 8.
• Learning rate: 0.15 for 8 workers and 0.1 for 4 workers. For

ResNet decay by a factor of 10 at the 81st epoch and the 121nd
epoch.

6.2. Experimental results

Effect of 𝝉 In this part, we study the cases where 𝜏 is 1, 2, 3, 4,
and 16 respectively. The baseline algorithm we compare is DPSGD

ver a stable network connection. We study the effect of 𝜏 under the
ondition that 𝑛 is 4 and 𝑛 is 8 respectively. We set 𝛾 is 0.1 when 𝑛 is 4
nd 𝛾 is 0.15 when 𝑛 is 8. Figs. 1 and 2 show the convergence of RDSGD
lgorithm when the network is unstable. It can be observed that DPSGD
an achieve the best accuracy and the training loss becomes larger as
he increase of 𝜏 whenever the number of workers is 4 or 8. When 𝜏 is
ess than 4, the loss of accuracy is not clearly reflected and when 𝜏 is
etween 8 and 16, the accuracy loss varies more. This can be explained
y the experiment’s lower number of iterations and the fact that only
he worst case was considered. In the worst-case scenario, when 𝜏 is 16,
ll workers exchange information with their neighbors only 10 times in
60 epochs. But no matter the value of 𝜏 and 𝑛, the convergence speed
f our algorithm is almost the same as DPSGD. We can find that when

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

t
s
h
f

2
D
S
𝜏
o
𝑛
c
o
w

Fig. 2. Effect of network instability on ResNet50.

he iteration reaches 80 epochs, the convergence speed of our algorithm
lows down and when the iteration reaches 120 epochs, training loss
ardly drops. The impact of 𝜏 on the performance of our algorithm just
ollows our theoretical analysis in Section 4.
Effect of noise For this case, we study the cases where 𝑐 is 0.5, 1,

, 4 and 8 respectively under the condition that 𝜏 = 2. Our baseline is
PSGD under a stable network connection and without injecting noise.
pecifically we set 𝑐 = 1 to represent RDSGD under the condition that
= 2 and without injecting noise. Figs. 3 and 4 show the performance
f DPSGD and our algorithm trained on ResNet18 and ResNet50 when
is 4 and 8. It can be observed that our algorithm is robust to

ommunication noise and the effect of noise degrades as the number
f workers is increased. Moreover, it also diminishes the effect of noise
hen training with a complex model.
Effect of network topology The network topology affects the effi-

ciency and complexity of communication. When the network topology
is more complex, the more workers communicate with each other and
the higher the complexity of communication. We mainly explore the
convergence of the algorithm under three network topologies: ring,
complete and general topology. Each worker can only communicate
with two neighbors in a ring network, and communicate with all other
workers in a complete network. In a general network, any two workers
176
Fig. 3. Effect of noise on ResNet18.

can form an edge with a probability of 0.5, which means that any
worker can communicate with half of the workers on expectation. We
explore the convergence of the algorithm for three different network
topologies with two models and different numbers of workers, and the
experimental results are shown in Figs. 5 and 6. It can be observed
that our algorithm has the same convergence rate in all experimental
settings for all three network topologies. However, our algorithm can
converge to the smallest training loss value in the general network
topology, and the algorithm has the worst training loss value in the full
topology. This implies that our algorithm achieves better convergence
even when communication complexity is reduced.

Extend Discussion We have constructed a network connection
instability situation where a worker has to reconnect within 𝜏 steps
when it goes offline. But for easier programming, we just validate the
worst scenario where all workers reconnect after 𝜏 step when it goes
offline. The exciting thing is that our algorithm has a satisfactory per-
formance with little loss of accuracy even in the worst case. Therefore,
if considering that the offline of the worker is an accidental event
and each worker has high robustness and can be quickly reconnected,
there is reason to believe that our algorithm can maintain the same
convergence rate and achieve better accuracy.

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

7

l
c
t
p
u
t
w
r
W
o
a

t
w
s
b
m
c

c
t
S
e

D

t
X
N

D

Fig. 4. Effect of noise on ResNet50.

. Conclusion

In this paper, we study a non-convex distributed optimization prob-
em over unstable networks. We mainly considered unstable network
onnections and noise, and characterized unstable network connec-
ions as message delays and noise as data dimension deviations. We
roposed a decentralized SGD algorithm capable of tolerating these
nstable factors including unstable connectivity networks, communica-
ion noise and artificially injected noise. Through theoretical analysis,
e demonstrate that our algorithm achieves the same convergence

ate as traditional decentralized algorithms under relaxed assumptions.
e apply our algorithm to an image classification task showing that

ur algorithm achieves comparable training accuracy with standard
lgorithms under stable networks.

Our work has shed some light on devising decentralized learning
olerating unstable network factors. It deserves more efforts to study
hether there are still efficient decentralized learning algorithms under

ome other faults, such as Byzantine faults and network change caused
y unstable nodes. In a wider consideration, any synchronous algorithm
odel can be introduced information delays and bias to study the

onvergence performance of the algorithm. Furthermore, it is urgently
177
Fig. 5. Effect of network topology on ResNet18.

necessary to explore methods with improved accuracy in such unstable
networks.

CRediT authorship contribution statement

Yanwei Zheng: Conceptualization, Methodology, Software, Investi-
gation, Formal analysis, Writing – original draft. Liangxu Zhang: Data
uration, Writing – original draft, Software. Shuzhen Chen: Visualiza-
ion, Investigation. Xiao Zhang: Resources, Supervision. Zhipeng Cai:
oftware, Validation. Xiuzhen Cheng: Supervision, Writing – review &
diting.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
iao Zhang reports financial support was provided by the National
atural Science Foundation of China.

ata availability

The dataset is public available.

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179

A

D
p
6
o

R

Fig. 6. Effect of network topology on ResNet50.

cknowledgments

This work was supported in part by the National Key Research and
evelopment Program of China under Grant No. 2022YFF0712100, in
art by the National Natural Science Foundation of China under Grant
2202273, in part by Shandong Provincial Natural Science Foundation
f China under Grant ZR2021QF044.

eferences

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, X. Zhang, TensorFlow: A System for
Large-Scale Machine Learning, USENIX Association, 2016.

[2] P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A.
Tulloch, Y. Jia, K. He, Accurate, large minibatch SGD: training ImageNet in 1
hour, 2017, CoRR, arXiv:1706.02677.

[3] Y. You, J. Li, S.J. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel,
K. Keutzer, C. Hsieh, Large batch optimization for deep learning: Training BERT
in 76 minutes, in: 8th International Conference on Learning Representations,
2020.

[4] M. Li, D.G. Andersen, A.J. Smola, K. Yu, Communication efficient distributed
machine learning with the parameter server, in: Advances in Neural Information
Processing Systems, vol. 27, 2014.

[5] S. Alqahtani, M. Demirbas, Performance analysis and comparison of distributed
machine learning systems, 2019, CoRR, arXiv:1909.02061.

[6] B. Recht, C. Ré, S.J. Wright, F. Niu, Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent, in: Advances in Neural Information Processing
Systems, 2011, pp. 693–701.
178
[7] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized par-
allel stochastic gradient descent, in: Advances in Neural Information Processing
Systems, vol. 30, 2017.

[8] A. Nedic, A. Olshevsky, M.G. Rabbat, Network topology and communication-
computation tradeoffs in decentralized optimization, Proc. IEEE 106 (5) (2018)
953–976.

[9] M. Assran, N. Loizou, N. Ballas, M.G. Rabbat, Stochastic gradient push for
distributed deep learning, in: Proceedings of the 36th International Conference
on Machine Learning, vol. 97, 2019, pp. 344–353.

[10] M. Seif, W.-T. Chang, R. Tandon, Privacy amplification for federated learning via
user sampling and wireless aggregation, in: 2021 IEEE International Symposium
on Information Theory, ISIT, 2021, pp. 2732–2737.

[11] H. Tang, S. Gan, C. Zhang, T. Zhang, J. Liu, Communication compression for
decentralized training, in: Advances in Neural Information Processing System,
2018, pp. 7663–7673.

[12] A. Koloskova, S. Stich, M. Jaggi, Decentralized stochastic optimization and
gossip algorithms with compressed communication, in: Proceedings of the 36th
International Conference on Machine Learning, vol. 97, 2019, pp. 3478–3487.

[13] A. Koloskova, T. Lin, S.U. Stich, M. Jaggi, Decentralized deep learning with arbi-
trary communication compression, in: 8th International Conference on Learning
Representations, 2020.

[14] H. Cheng, P. Yu, H. Hu, F. Yan, S. Li, H. Li, Y. Chen, LEASGD: an efficient and
privacy-preserving decentralized algorithm for distributed learning, 2018, CoRR,
arXiv:1811.11124.

[15] H. Cheng, P. Yu, H. Hu, S. Zawad, F. Yan, S. Li, H.H. Li, Y. Chen, Towards
decentralized deep learning with differential privacy, in: Cloud Computing, vol.
11513, 2019, pp. 130–145.

[16] J. Xu, W. Zhang, F. Wang, A (DP)2SGD: Asynchronous decentralized parallel
stochastic gradient descent with differential privacy, IEEE Trans. Pattern Anal.
Mach. Intell. (2021) 1.

[17] C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D. Alistarh, C. Zhang, J.
Liu, Distributed learning over unreliable networks, in: Proceedings of the 36th
International Conference on Machine Learning, vol. 97, 2019, pp. 7202–7212.

[18] L. Su, On the convergence rate of average consensus and distributed optimization
over unreliable networks, in: Asilomar Conference on Signals, Systems, and
Computers, 2018, pp. 43–47.

[19] B. Sirb, X. Ye, Decentralized consensus algorithm with delayed and stochastic
gradients, SIAM J. Optim. 28 (2) (2018) 1232–1254.

[20] S.L. Smith, E. Elsen, S. De, On the generalization benefit of noise in stochastic
gradient descent, in: Proceedings of the 37th International Conference on
Machine Learning, vol. 119, 2020, pp. 9058–9067.

[21] H. Yu, Z. Chen, X. Zhang, X. Chen, F. Zhuang, H. Xiong, X. Cheng, FedHAR: Semi-
supervised online learning for personalized federated human activity recognition,
IEEE Trans. Mob. Comput. (2021).

[22] J. George, P. Gurram, Distributed stochastic gradient descent with event-triggered
communication, in: The Thirty-Fourth AAAI Conference on Artificial Intelligence,
2020, pp. 7169–7178.

[23] A.T. Suresh, F.X. Yu, S. Kumar, H.B. McMahan, Distributed mean estimation with
limited communication, in: Proceedings of the 34th International Conference on
Machine Learning, vol. 70, 2017, pp. 3329–3337.

[24] J. Wangni, J. Wang, J. Liu, T. Zhang, Gradient sparsification for communication-
efficient distributed optimization, in: Advances in Neural Information Processing
Systems, 2018, pp. 1306–1316.

[25] S.P. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algorithms, IEEE
Trans. Inf. Theory 52 (6) (2006) 2508–2530.

[26] A. Nedic, A. Olshevsky, Distributed optimization over time-varying directed
graphs, IEEE Trans. Automat. Control 60 (3) (2015) 601–615.

[27] Z. He, J. He, C. Chen, X. Guan, Constrained distributed nonconvex optimization
over time-varying directed graphs, in: IEEE Conference on Decision and Control,
IEEE, 2020, pp. 378–383.

[28] Z. Chen, D. Chen, X. Zhang, Z. Yuan, X. Cheng, Learning graph structures with
transformer for multivariate time series anomaly detection in iot, IEEE Internet
Things J. (2021).

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A.y. Arcas, Communication-
efficient learning of deep networks from decentralized data, in: Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, vol.
54, 2017, pp. 1273–1282.

[30] A. Agarwal, J.C. Duchi, Distributed delayed stochastic optimization, in: Advances
in Neural Information Processing Systems, 2011, pp. 873–881.

[31] S. Sra, A.W. Yu, M. Li, A. Smola, AdaDelay: Delay adaptive distributed stochastic
convex optimization, in: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, vol. 51, 2016, pp. 957–965.

[32] W. Zhang, S. Gupta, X. Lian, J. Liu, Staleness-aware async-SGD for distributed
deep learning, in: Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 2016, pp. 2350–2356.

[33] L. Adilova, N. Paul, P. Schlicht, Introducing noise in decentralized training of
neural networks, in: ECML PKDD 2018 Workshops, 2019, pp. 37–48.

[34] A. Spiridonoff, A. Olshevsky, I.C. Paschalidis, Robust asynchronous stochastic
gradient-push: Asymptotically optimal and network-independent performance for
strongly convex functions, J. Mach. Learn. Res. 21 (1) (2022).

http://refhub.elsevier.com/S0140-3664(23)00071-3/sb1
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb1
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb1
http://arxiv.org/abs/1706.02677
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb3
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb4
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb4
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb4
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb4
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb4
http://arxiv.org/abs/1909.02061
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb6
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb6
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb6
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb6
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb6
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb7
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb8
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb8
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb8
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb8
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb8
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb9
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb9
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb9
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb9
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb9
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb10
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb10
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb10
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb10
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb10
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb11
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb11
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb11
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb11
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb11
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb12
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb12
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb12
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb12
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb12
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb13
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb13
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb13
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb13
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb13
http://arxiv.org/abs/1811.11124
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb15
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb15
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb15
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb15
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb15
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb16
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb16
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb16
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb16
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb16
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb17
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb17
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb17
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb17
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb17
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb18
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb18
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb18
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb18
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb18
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb19
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb19
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb19
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb20
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb20
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb20
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb20
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb20
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb21
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb21
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb21
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb21
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb21
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb22
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb22
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb22
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb22
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb22
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb23
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb23
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb23
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb23
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb23
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb24
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb24
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb24
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb24
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb24
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb25
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb25
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb25
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb26
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb26
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb26
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb27
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb27
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb27
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb27
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb27
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb28
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb28
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb28
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb28
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb28
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb29
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb30
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb30
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb30
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb31
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb31
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb31
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb31
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb31
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb32
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb32
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb32
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb32
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb32
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb33
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb33
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb33
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb34
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb34
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb34
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb34
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb34

Y. Zheng, L. Zhang, S. Chen et al. Computer Communications 203 (2023) 163–179
[35] A. Fallah, M. Gurbuzbalaban, A.E. Ozdaglar, U. Simsekli, L. Zhu, Robust
distributed accelerated stochastic gradient methods for multi-agent networks,
2019, ArXiv, arXiv:1910.08701.

[36] C. Dwork, A. Roth, The algorithmic foundations of differential privacy, Found.
Trends Theor. Comput. Sci. 9 (3–4) (2014) 211–407.

[37] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images,
Handb. Syst. Autoimmune Dis. 1 (4) (2009).

[38] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[39] A. Awan, R.A. Ferreira, S. Jagannathan, A. Grama, Distributed uniform sam-
pling in unstructured peer-to-peer networks, in: 39th Hawaii International
International Conference on Systems Science, 2006.

Yanwei Zheng received the Ph.D. degree in 2019 from the
School of Computer Science and Engineering, Beihang Uni-
versity, Beijing. He is currently an Associate Professor with
the School of Computer Science and Technology, Shandong
University, Qingdao. His research interests include visual
navigation and computer vision.

Liangxu Zhang received the B.S. degree in 2020 from
the School of Computer Science and Technology, Shandong
University. He is currently pursuing the M.S. degree in the
school of Computer Science and Technology, Shandong Uni-
versity. His research interests include distributed computing,
wireless and mobile security.

Shuzhen Chen received the B.S. degree in 2019 from the
School of Computer Science and Technology, Shandong
University. She is currently pursuing the Ph.D. degree in
the school of Computer Science and Technology, Shan-
dong University. Her research interests include distributed
computing, wireless and mobile security.
179
Xiao Zhang received his B.S. and Ph.D degree from Central
South University and Nanjing University, China, respec-
tively. He is now an assistant professor in the School of
Computer Science and Technology, Shandong University. Dr.
Zhang’s research interests include data mining, intelligent
sensing, multi-task learning and federated learning.

Zhipeng Cai is currently an Associate Professor in the
Department of Computer Science at Georgia State Univer-
sity, USA. He received his PhD and M.S. degrees in the
Department of Computing Science at University of Alberta,
and B.S. degree from Beijing Institute of Technology. Dr.
Cai’s research areas focus on Wireless Networking, Internet
of Things, Machine Learning, Cyber-Security, Privacy and
Big data. Dr. Cai is the recipient of an NSF CAREER Award.
He served as a Steering Committee Co-Chair and a Steering
Committee Member for WASA and IPCCC. Dr. Cai also
served as a Technical Program Committee Member for more
than 20 conferences, including INFOCOM, MOBIHOC, ICDE,
and ICDCS. Dr. Cai has been serving as an Associate Editor-
in-Chief for Elsevier High-Confidence Computing Journal
(HCC), and an Associate Editor for several international
journals, such as IEEE Internet of Things Journal (IoT-
J), IEEE Transactions on Knowledge and Data Engineering
(TKDE), and IEEE Transactions on Vehicular Technology
(TVT). He has published more than 70 papers in prestigious
journals with more than 40 papers published in IEEE/ACM
Transactions.

Xiuzhen Cheng received her M.S. and Ph.D. degrees in
computer science from the University of Minnesota—Twin
Cities in 2000 and 2002, respectively. She is a professor
of Computer Science at Shandong University, PR China.
Her current research focuses on Blockchain computing,
privacy-aware computing, and wireless and mobile security.
She served/is serving on the editorial boards of several
technical journals and the technical program committees
of various professional conferences/workshops. She was a
faculty member in the Department of Computer Science at
The George Washington University from September 2002 to
August 2020, and worked as a program director for the US
National Science Foundation (NSF) from April to October
in 2006 (full time) and from April 2008 to May 2010 (part
time). She received the NSF CAREER Award in 2004. She
is a member of ACM, and a Fellow of IEEE.

http://arxiv.org/abs/1910.08701
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb36
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb36
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb36
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb37
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb37
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb37
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb38
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb38
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb38
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb38
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb38
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb39
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb39
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb39
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb39
http://refhub.elsevier.com/S0140-3664(23)00071-3/sb39

	Robust decentralized stochastic gradient descent over unstable networks
	Introduction
	Related Work
	Preliminaries
	Robust Decentralized SGD
	Algorithm
	Theoretical Results
	Analysis of Algorithm 1

	Noise Robust Decentralized SGD
	Algorithm
	Theoretical Analysis
	Analysis of Algorithm 2

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

