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ABSTRACT

The study of graph kernels has been an important area of graph analysis, which is widely used to solve 
the similarity problems between graphs. Most of the existing graph kernels consider either local or 
global properties of the graph, and there are few studies on multiscale graph kernels. In this article, the 
authors propose a framework for graph kernels based on truss decomposition, which allows multiple 
graph kernels and even any graph comparison algorithms to compare graphs at different scales. The 
authors utilize this framework to derive variants of five graph kernels and compare them with the 
corresponding basic graph kernels on graph classification tasks. Experiments on a large number of 
benchmark datasets demonstrate the effectiveness and efficiency of the proposed framework.
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INTRoDUCTIoN

Graph, a form of structured data, allows for the modeling of complex relationships among objects. 
In recent years, more and more data are modeled as graphs and such data is ubiquitous in social 
networks, biology, chemistry, computer vision, and other domains (Cai et al., 2018, 2021; L. Li et 
al., 2019; Yanardag & Vishwanathan, 2015b). For example, graphs can be derived from interactions 
between groups of people, such as friendships on a social website, or collaborations in a network of 
actors or scientists. In biochemistry, molecular compounds can be modeled as graphs with vertices 
corresponding to atoms and the edges to chemical bonds (Vishwanathan et al., 2010).

The problem of accurately measuring the similarity between graphs is at the core of many 
applications(Peng et al., 2022). As the demand for structured data analysis grows, the problem of graph 
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classification has been widely studied in these domains. For example, in protein function prediction, 
it is a common task to determine whether a protein is an enzyme or a non-enzyme (Borgwardt & 
Kriegel, 2005). A similar task on a collaboration dataset is to predict which genre an ego-network 
of an actor/actress belongs to (Yanardag & Vishwanathan, 2015b). Since there are many ways to 
represent images as graphs, many computers vision tasks, such as classifying images(Tian & Han, 
2022), can also be considered as graph classification problems.

To date, the kernel methods are one of the most popular methods for comparing similarities 
between structured objects, especially in the domain of graph classification. Graph kernels have 
achieved state-of-the-art results on many graph datasets. In general, the kernel methods utilize a 
positive semidefinite kernel function to measure the similarity between two objects, which can be 
expressed as an inner product in reproducing kernel Hilbert space   (Schölkopf & Smola, 2001). 
Some graph kernels are computed based on local properties, such as the neighborhood features of 
vertices (Hido & Kashima, 2009), or some small substructures of graphs (i.e., trees, cycles, graphlets) 
(Horváth et al., 2004; Orsini et al., 2015; Shervashidze et al., 2009, 2011). There are also some graph 
kernels built from a global perspective and they focus on the global properties of graphs (Kang et 
al., 2012; Nikolentzos et al., 2017; Wu et al., 2019). Most of the existing graph kernels cannot capture 
graph similarity at multiple levels of scale. The Multiscale Laplacian Graph Kernel (Kondor & Pan, 
2016) is the first graph kernel that can compare graphs at multiple different scales, by building a 
hierarchy of nested subgraphs. However, it requires Laplacian matrix operations on the graph and 
thus has a very high runtime.

In the real world, many graphs have different structures at different scales. For example, a molecule 
has a small structure, such as a specific chemical bond, and an overall structure, such as a chain or a 
ring. By extracting the structure of the graph at different scales, it is possible to reflect the relationship 
of local structures relative to the global structure. Therefore, it would be desirable to find an efficient 
way to reveal the structure of a graph at different scales. Considering that most real-world graphs are 
usually sparse overall and dense in parts, the dense regions may reflect a higher frequency of 
interactions between these vertices and greater similarity to each other (Lotito & Montresor, 2020). 
Hence, the density information of the graph can be used to reveal the graph structure. In the literature, 
many concepts of cohesive subgraphs have been proposed to explore dense regions. The k -truss is 
a popular type of cohesive subgraph that has been studied in recent years. It has been applied to 
community search (Katunka et al., 2017; Yu et al., 2020), complex network visualization (Zhao & 
Tung, 2012), and other applications. The k -truss of G  is the largest subgraph of G  in which every 
edge is contained in at least k -2  triangles within the subgraph (J. D. Cohen, 2008). It is defined 
based on the triangle, which denotes the existence of stable relations among three nodes. k  reflects 
the density information of the graph. The k -truss decomposition procedure is to find the k -trusses 
for all possible k  on the graph, which leads to hierarchical subgraphs that represent the dense regions 
of a graph at different scales. In this way, it is possible to reveal graph structure at different scales. 
To the best of the authors’ knowledge, graph kernel combined with k -truss has not yet been studied 
in the literature.

In this article, a new framework is proposed for graph similarity. The authors take advantage of 
the k -truss decomposition to obtain hierarchical structures of G  at different scales, then add up the 
similarity between the corresponding subgraphs according to the hierarchy. The combined result 
provides a more accurate representation of graph similarity. More specifically, the contributions in 
this article are as follows:

• The authors first propose a framework for comparing graphs at multiple different scales utilizing 
k -truss decomposition of graphs to build a hierarchy of nested subgraphs. The framework can 
be applied to all methods used for graph comparison.
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• The framework generates valid truss variants of several base graph kernels, which enhances 
the expressivity of base graph kernels for complex substructures. In particular, the framework 
improves the performance of base graph kernels on graph classification tasks.

• The authors evaluate the framework on a set of benchmark datasets. Moreover, the truss variants 
perform well and achieve significant improvements over the base kernels in most cases.

The rest of this article is organized as follows. In Section 2, the authors review some related work 
in the literature. In Section 3, the authors review some preliminary concepts and give details about truss 
degeneracy and k-truss decomposition. In Section 4, the authors introduce the proposed framework 
for graph similarity. In section 5, the authors implement and evaluate the proposed framework on 
several benchmark datasets. Section 6 concludes the article.

BACKGRoUND

In this section, the related work is presented in terms of both graph kernel studies and k-truss mining.

Graph Kernels
One of the most popular frameworks to construct kernels is R-convolution (Haussler, 1999) where 
the key idea is to decompose graphs into substructures and add up the pairwise similarities between 
them. Specific subgraphs focus on different structural aspects of graphs, such as random walks 
(Kang et al., 2012; Kashima, 2003), graphlets (Shervashidze et al., 2009), cycles(Horváth et al., 
2004), paths (Borgwardt & Kriegel, 2005), and subtrees (B. Li et al., 2012; Morris et al., 2017). 
Besides the family of R-convolution, assignment kernels have received a lot of attention recently. 
This framework maximizes the similarity of the two graphs by calculating the matching between their 
substructures. (Nikolentzos et al., 2017) applies pyramid match kernel to match the node embeddings 
of graphs. There are also some frameworks that work on top of graph kernels and aim to improve 
the performance of base kernels. The deep graph kernels framework (Yanardag & Vishwanathan, 
2015b) and the structural smoothing framework (Yanardag & Vishwanathan, 2015a) are inspired 
by natural language processing. R-convolution suffers from diagonal dominance, which means that 
there are few substructures common to all, causing each graph to be similar only to itself and not to 
other graphs. These two frameworks were developed to address the diagonal dominance problem. 
The core framework (Nikolentzos et al., 2018) is another example of improving the performance 
of graph kernels which takes into account structure at multiple different scales. The 𝑘-core of 𝐺 is
the largest subgraph of 𝐺 in which every vertex has at least 𝑘 neighbors within the subgraph (Jin et
al., 2018; Luo, Yu, Cai, et al., 2021; Luo, Yu, Zheng, et al., 2021). It utilizes the well-known 𝑘-core
decomposition of graphs to build a hierarchy of nested subgraphs (Hua et al., 2020; Luo et al., 2019; 
N. Wang et al., 2017; Zhou et al., 2021). It is also applicable to existing graph kernels, as well as any 
graph comparison algorithm.

K-Truss Mining
The 𝑘-truss (J. D. Cohen, 2008) is the largest subgraph of a graph in which every edge is contained
in at least (𝑘 − 2) triangles within the subgraph. The k-truss decomposition (J. Wang & Cheng, 2012)
is to find the k-trusses for all possible k values in the graph. In recent works, (J. D. Cohen, 2008) 
proposed a base algorithm for truss decomposition, which is a typical in-memory truss decomposition 
algorithm. (J. Cohen, 2009) used MapReduce framework to perform truss decomposition in parallel, 
but the proposed method is relatively inefficient when dealing with large graphs. (Chen et al., 2014) 
first improved the existing distributed k-truss decomposition in the MapReduce framework and 
designed an algorithm based on graph-parallel abstraction. (J. Wang & Cheng, 2012) modified the 
algorithm proposed by (J. D. Cohen, 2008) and proposed an efficient in-memory algorithm and two 
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I/O-efficient algorithms for truss decomposition in massive networks. Furthermore, many researchers 
have studied k -truss on multiple types of graphs, including directed graphs (Liu et al., 2020), 
probabilistic graphs (Huang et al., 2016), and public-private networks (Ebadian & Huang, 2019). For 
truss maintenance, (Huang et al., 2014) proposed a simple truss maintenance algorithm on dynamic 
graphs with single-edge operation. (Akbas & Zhao, 2017) proposed an index structure EquiTruss to 
accelerate community search which can be efficiently updated dynamically. (Luo et al., 2020) is the 
first work to study the batch processing of truss maintenance in large graphs and their solution is 
innovative with multi-edge insertions/deletions.

DeTAILS oF THe GRAPH KeRNeLS AND K-TRUSS

Graph Kernel Theory
In this section, the authors first describe kernel function and kernel matrix, and then an overview of 
several graph kernels is provided.

Let k G G�:� � �× →� �R  be a kernel function for all G G, 'Î  �, there exists a map �f��G H�: ®  into 
a Hilbert space   such that

k G G' G G', ,( ) = ( ) ( )f f , (1)

where the operation between f G( )  and f G '( )  is the Euclidean dot product in  . Given a set of 
graphs G G

n1
, ...,{ }  and a kernel function k , the element K

ij
 of a kernel matrix K  is calculated 

as

K K k G Gij ji i j= = ( ), , (2)

for 1� �,� � �£ £i j n . The kernel matrix must be positive semidefinite (i.e. PSD), as it is a necessary condition 
for solving some convex optimization problems (including SVM) in kernel-based methods. One way 
to check if a kernel matrix is PSD is to see if the eigenvalues of this matrix are all non-negative. 
Furthermore, it is noted that kernel functions are additive, that is, a linear sum of two valid kernels 
is also valid. This can be formalized as:

k'' ck c k'·,· ·,· ·,·( ) = ( )+ −( ) ( )1 , (3)

for 0 1� � � �< <c . A sophisticated kernel can be defined by a linear combination of valid kernels. Good 
graph kernels are desired to be both effective and efficient. It should be highly expressive of the graph 
structure and has low computational complexity in both time and space.

The authors have selected several graph kernels for their experiments, which are described below.

• Graphlet Kernel (GR) (Shervashidze et al., 2009). A graphlet is a non-isomorph subgraph with 
k  nodes k ∈ { }( )3 4 5, , . Let Γ = …{ }g g g

k1 2
, , ,  be the set of graphlets of size k , f R

G
dÎ  be 

a vector whose i -th element represents the number of g
i
 divided by the total number of graphlets 

in G . Formally, the graph kernel is defined as:
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k G G' f fGR G G', ,( ) = , (4)

where the operation between f
G

 and f
G '

 is the Euclidean dot product.

• Shortest Path Kernel (SP) (Borgwardt & Kriegel, 2005). The first step of the kernel is to 
transform the original graphs into shortest paths ones using the shortest path algorithm (i.e. 
Floyd’s algorithm). Given G , the shortest paths graph S  has the same vertex set as G . If vertex 
u  and  v  have a walk in G , there is an edge u v,( )  in S . Then the edge is labeled by the length 
of the walks. Let Γ = …{ , , , }p p p

k1 2
 be the set of all shortest paths in G , with each one denoted 

as a triplet of the labels of the endpoints and the length of the path. Formally, the shortest path 
kernel is defined as:

k G G' p pSP G G', ,( ) = , (5)

where p
G

 be a vector whose i -th element reflects the occurring frequency of p
i
 in G .

• Weisfeiler-Lehman Subtree Kernel (WL) (Shervashidze et al., 2011). The kernel is based on 
Weisfeiler-Lehman test of graph isomorphism. Let G ,G '  be two graphs, Σ i


 be the set of 

labels that appear in these two graphs at the end of the i -th iteration of the WL algorithm. 
Especially, � �Σ 0


 is the original label set. In each iteration, the labels of the node and its neighboring 

nodes merge into a multiset label, which is given a new label. Then the Weisfeiler-Lehman subtree 
kernel is defined as:

k G G' G G'WL , ,( ) = ( ) ( )f f , (6)

where f G( )  is a vector of h +1  blocks, denoted as block 0 to block h, and the i -th element in j -th 
block reflects the occurring frequency of the corresponding label in the j -th iteration.

• Neighborhood Hash Kernel (Hido & Kashima, 2009). For labeled graphs, the kernel replaces 
the discrete node labels with a unique binary representation, then uses logical operations (XOR 
and ROT) to compute the neighborhood hash of a vertex. Furthermore, the Count-Sensitive 
neighborhood hash takes into account the number of neighbors with the same label using additional 
logical operations. Then the kernel is defined as:

k G G' c
V V' cNH ,( ) =
+ −

, (7)

where c  is the number of common labels in two graphs.
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• Pyramid Match Graph Kernel (PM) (Nikolentzos et al., 2017). Firstly, the pyramid match 
graph kernel embeds the vertices of the input graphs in a vector space and partitions the feature 
space into regions of increasingly larger size. Given level l L∈ { }0,..., , the d -dimensional unit 
hypercube has C dl= 2  cells with 2l  cells in one dimension. H

G
l  is a histogram of the number 

of vertices per cell at level l . And then a histogram intersection function I  is used to count the 
matching points in two graphs at level l . DI  means the new matches found at each level, which 
are weighted as w

l
L l= −1 2/ . Then the kernel is defined as:

k G �G' I H H w ”IPM G
L

�G'
L

l

L

l, ,( ) = ( )+ ( )
=

−

∑ 0

1
. (8)

Truss Degeneracy and Truss Decomposition
In this part, the authors first give an introduction of k -truss and truss degeneracy, then give details 
about the truss decomposition algorithm. Table 1 summarizes the symbols used in this article.

A k -truss is a connected subgraph of a graph in which every edge is contained in at least k �−( )2  
triangles (J. D. Cohen, 2008). A triangle in G  is a cycle of length 3. The triangle with three vertices 
u v w, ,  is denoted by 

uvw
. The set of triangles of G  is denoted as 

G
. The support of an edge 

e u v� � ,=( )  in G , denoted by sup e G,( ) , is defined as � �: � �  

uvw uvw G
∈{ } , as well as      N u N v( )∩ ( ) . 

When the context is clear, sup e G,( ) can be replaced by sup e( ) . The support of e  is the number of 
triangles in which e  is involved in G . The k -truss of G , is defined as the largest subgraph H  of 
G  such that ∀ ∈ ( ) ( )≥ −( )e E H sup e H k� � ,� ,� � � � �2 . 𝐺 itself is at least a 2-truss. In other words, the condition
k ³ 2  always holds for any graph. The truss number, or trussness of e  in G , is denoted by t e( ) , 

as max k e E T
k

�:� � �∈ ( ){ } . t e k( ) =  means e  exists in T
k

, but not in T
k+1

. So T
k

 is the highest-order 

truss to which e  belongs. It is clear that t e sup e T
k( ) = ( )+, 2 . Given a graph G , the authors define 

the maximum trussness t e G� ,( )  of all edges as the truss degeneracy, w* G max t e
e E( ) = ( )∈ . In Figure 

1, it is observed that the truss degeneracy of this graph is w* G( ) = 5 . The 5-truss �T
5

 contains 5 
vertices a b c d e, , , ,{ } . The 4-truss �T

4
 contains 4 vertices g h k l, , ,{ } . The edges c j,( )  and � �k j,( ) have 

the trussness of 2. Given a graph G , the problem of truss decomposition is to compute the k -truss 
of G  for all 2� � � � *≤ ≤ ( )k Gw . For a given value of k , finding k -truss is equivalent to obtaining a 
subgraph induced by all edges with trussness at least k , or with support at least k -2 . Truss 

decomposition aims to obtain the trussness of each edge. Furthermore, assuming that T T T
G

= { }( )2
,..., *w

 

is the result of the truss decomposition, the T  forms a nested chain: 

T T T G
É G* ( )
⊆ ⊆ ⊆ =...

3 2
. (9)

The nested nature above makes truss decomposition a very effective tool for discovering graph 
hierarchies. An edge belonging to the k � �+( )1 -truss obviously belongs to the k -truss. Since higher-
order trusses are nested within lower-order trusses, an intuitive idea is that the trusses can be calculated 
in the reverse order of the nested chain above.
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The traditional batch 𝑘-truss decomposition algorithm is proposed in (J. D. Cohen, 2008). The
algorithm recursively removes all edges with support less than k � �-2  triangles until there are no more 
edges to remove, and finally obtains the k -truss. Since the time complexity to search for 

uvw
 of 

this algorithm is high, (J. Wang & Cheng, 2012) proposes an improvement that optimizes the time 
complexity to O m1 5.( ) , as shown in Algorithm 1. Both algorithms require O m n  +( )  memory space. 
In Algorithm 1, initially, the algorithm uses the in-memory triangle counting algorithm (Latapy, 

Table 1. 
Notations and descriptions

Notations Descriptions

 The space of graphs

 A Hilbert space

G V E,( ) An undirected and unweighted simple graph G

e u v� � ,=( ) An edge e  with endpoints u  and v

n V   = The number of vertices

m E  = The number of edges

H A subgraph of G

E H( ) The set of edges of H



uvw A triangle formed by the vertices of u , v , w

N u G,( ) The neighbors of u  in G

deg u G,( ) The number of neighbors of u  in G

sup e G,( ) The support of e  in G

T G
k ( ) The k -truss of G

t e G,( ) The trussness of e  in G

� *w G( ) The maximum trussness t e G,( )  of all edges in G

� *w
min
G( ) The minimum w* G( )  in a set of graphs

�� *w
avg
G( ) The average w* G( )  in a set of graphs
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2008) to compute the support of all edges in G . Then the edges in G  are sorted in order of their 
supports using bin sort. For each trussness k � �³3  (k � �=2  is omitted for T G

2
� �= ), the edges with support 

less than k � �-2  are deleted from G , causing the subtraction of 1 from the support of the other two 
edges of the triangles containing them. The edges whose support values are updated should be 
reordered. When there are no edges to delete, output G  as T

k
.

Jdm.322087.g01
For some base graph kernels, the nested nature of the truss can be used to avoid some calculations. 

For example, as for the Weisfeiler-Lehman subtree kernel, given two trusses of a graph T
i
 and T

j
 

with    i j< , all te subtrees found in T
j
 will also be present in T

i
. Some calculations can be performed 

only once, instead of once at each order of truss.

TRUSS FRAMewoRK

In this section, the authors propose a new framework based on k -truss for graph similarity that works 
on top of graph kernels, and then show how existing graph kernels can be combined with the framework 
for performance improvement.

Truss-based Graph Kernels
The new framework utilizes truss decomposition to generate the truss variants of the existing base 
graph kernels. The framework compares graph structures at different scales represented by the graphs’ 
k -trusses. Theoretically, the internal truss implies a stronger connection between the edges. Hence, 
it is hoped that by decomposing graphs into progressively denser subgraphs, it is easier to get their 
potential structure and compare graphs more efficiently. Let G V E� � ,�=( )  and G V E' ', '=( )  be two 
graphs and let k  be any kernel for graphs. The truss variant kernel k

t
 of the base kernel k  is defined 

as:

k G G' k T T k T T k T Tt
' '

É É
'

min
*

min
*, , , ... ,( ) = ( )+ ( )+ + ( )2 2 3 3

, (10)

Figure 1. 
The graph showing edges’ trussness
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where w
min
*  means the minimum of the truss degeneracies of the two graphs, T T T

min
2 3
, ,..., *w{ }  and 

T T T
min

2 3
' ' ', ,..., *w{ }  mean the 2-truss, 3-truss,..., w

min
* -truss of G  and G '  respectively. This procedure 

can be seen as running a specific base kernel function on the corresponding trusses of the two graphs 
separately and adding up the results of each comparison. Next, the authors prove the positive 
semidefinite nature of the proposed kernel.

Statement of Validity of the Truss Variants

Let the base kernel k  be any positive semidefinite kernel on graphs, then the truss variant kernel k
t
 

of the base kernel k  is positive semidefinite. Let f  be the feature mapping corresponding to the 
kernel k :

k G G � G G, ,′ ′( ) = ( ) ( )f f . (11)

Let t
i

·( )  be a function that removes all edges with trussness less than i  from 𝐺 :

k T T t G t G'i i
'

i i, ,( ) = ( )( ) ( )( )f f . (12)

If the feature mapping f t
i

·( )( )  is defined as y ·( ) , then Equation 12 can be expressed as:

k T T È G È G'i i
', ,( ) = ( ) ( ) . (13)

Hence k  is a kernel on T
i
 and T

i
' . According to Equation 3, as the sum of a set of positive 

semidefinite kernels, the proposed kernel k
t
 is also a positive semidefinite kernel. 

As stated above, the authors have proposed a framework that can improve the performance of 
existing graph kernels. It can be combined with any algorithm for graph comparison which is not 
limited to just the graph kernel. Given two graphs G  and G '  and a base kernel k , Algorithm 2 gives 
the procedure for calculating the truss variant kernel k

t
.

JDM.322087.g02

Time Complexity Analysis
A good graph kernel not only requires good graph similarity representation capabilities and strong 
applicability, but it must also be competitive in terms of time complexity. The truss decomposition 
itself can be done within polynomial time, so the proposed graph kernel is very promising. Given a 
pair of graphs G  and G ' , and a kernel function k  with the time complexity of O

k
. The graph kernel 

function here can be any algorithm used for graph comparison. Let w w w
min

G G* * *min{ , ' }= ( ) ( )  
be the minimum of the truss degeneracies of G  and G ' . Then the time complexity of the truss variant 
k
t
 is O O

k min kt
= w* . In the real world, it always holds that w* G n( )  for most graphs. Therefore, 

the proposed framework adds a relatively small-time complexity to the base graph kernel.
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eXPeRIMeNTS AND eVALUATIoN

In this section, the authors first introduce the datasets used in the experiments and then give the 
details of the experiments. Finally, a performance comparison between the basic kernels and truss 
variants is given.

Datasets
In order to evaluate the performance of the framework, the authors applied the framework to 
benchmark datasets which include chemoinformatics datasets (MUTAG, PTC-MR, NCI1, and 
NCI109), bioinformatics datasets (ENZYMES and PROTEINS), social networks datasets (IMDB-
BINARY, IMDB-MULTI, REDDIT-BINARY, and REDDIT-MULTI-5K), and synthetic datasets 
(SYNTHETICnew and Synthie). Note that the chemoinformatics and bioinformatics datasets are 
labeled, while all other graph datasets are unlabeled. Table 2 summarizes the properties of the datasets 
used in the experiments.

experimental Setup
To evaluate both the effectiveness and the efficiency of the proposed graph kernels, the authors made 
use of the GraKeL library (Siglidis et al., 2020) which contains implementations of 15 kernels and 
2 kernel frameworks. All kernels are implemented in Python. Several base graph kernels are selected 
from current main families of graph kernels in the literature, namely graphlet kernel (GR), Weisfeiler-
Lehman subtree kernel (WL), shortest-path kernel (SP), pyramid match graph kernel (PM), and 
neighborhood hash kernel (NH). The authors employed C-Support Vector Machine (SVM) classifier 
and performed 10-fold cross-validation. The parameter C  of the SVM and the hyperparameters of 
the kernels were optimized on a validation experiment on the training set. All kernel matrices were 
normalized in the experiments. The value of C  was chosen from 10 10 10 107 5 5 7− −{ }, ,..., , . The 
parameters of the graph kernels were chosen as follows. For the graphlet kernel, the size of graphlets 
was chosen from 3 4 5, ,{ } , and the number of sampling graphlets was chosen from 150 200 500, ,{ } . 

Table 2. 
Properties of the datasets used in graph kernel experiments. The “M.C.I” stands for max class imbalance, which refers to the 
ratio of the size of the smallest class to the largest class in the dataset

Datasets Size Classes M.C.I Avg. Nodes Avg. Edges Node Labels Avg. Deg Avg. △

MUTAG 188 2 1:1.98 17.93 19.79 7 2.19 0

PTC-MR 344 2 1:1.26 14.29 14.69 19 1.98 0.04

ENZYMES 600 6 1:1 32.63 62.14 3 3.87 25.51

PROTEINS 1113 2 1:1.47 39.06 72.82 3 3.73 27.4

NCI1 4110 2 1:1.49 29.87 32.3 37 2.16 0.05

NCI109 4127 2 1:1.48 29.68 32.13 38 2.17 0.04

IMDB-BINARY 1000 2 1:1 19.77 96.53 - 8.89 391.99

IMDB-MULTI 1500 3 1:1 13 65.94 - 8.1 305.9

REDDIT-BINARY 2000 2 1:1 429.63 497.75 - 2.34 24.84

REDDIT-MULTI-5K 5000 5 1:1 508.52 594.87 - 2.25 21.77

SYNTHETICnew 300 2 1:1 100 196.25 - 3.93 4.96

Synthie 400 4 1:1.22 95 172.93 - 3.75 18.81
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For the Weisfeiler-Lehman subtree kernel, the number of iterations h  was chosen from 1 2 3 4 5 6, , , , ,{ } . 
Similarly, for the neighborhood hash kernel, the neighborhood range R  was chosen from 1 2 3 4 5 6, , , , ,{ } . 
The shortest-path kernel lacks hyperparameters, while for the pyramid match graph kernel, the 
embedding dimension d  was chosen from 4 6 8 10, , ,{ }  and level number L  was chosen from 2 4 6, ,{ } . 
To summarize, the parameters of the graph kernel are set as follows:

The authors report average accuracies and standard deviations in Table 4. Truss variants with 
improvements to the basic kernels are shown in bold. Furthermore, to study the runtime, the authors 
examined the computation time of the kernel matrices and give the comparison of the running time 
of base kernels vs their truss variants. For each fold of the 10-fold cross-validation, the runtime of 
the kernel is considered to be the runtime of the kernel matrix that performed best on the validation 
experiments.

Results
To begin with, base kernels are compared with their truss variants on performing graph classification. 
Table 4 demonstrates that the proposed framework improves the classification accuracy on almost 
all datasets. It is noted that the truss variants outperform their base kernels on 43 out of the 60 
experiments. On the PTC-MR and REDDIT-MULTI-5K datasets, all the truss variants improve the 
classification accuracy achieved by the basic kernels. It is clear that on most datasets, the performance 
of the framework applied to GR and PM is greatly improved. Truss PM improves the accuracy attained 
by the PM kernel on all datasets. Specifically, truss GR improves the accuracy on 5 datasets by more 
than 9% , and it improves accuracy on symmetric datasets by more than 12% . Conversely, truss WL 
improves accuracy by a very small amount on most datasets. One speculation is that WL graph kernel 
only takes local graph properties into account and aggregates the domain information of the vertices 
to generate the features of the vertices. It is possible that for most vertices, their local neighborhood 
in a k-truss is roughly the same as its neighbors in the whole graph.

In terms of running time, it is noted that the additional computational cost of computing the truss 
variants is negligible. For further analysis, the authors calculated the average truss degeneracy w

avg
G* ( )  

of the graphs for each dataset (shown in Figure 2), and it is visually observed that the running time 
on a dataset has a close relationship with its w

avg
G* ( )  value. In particular, on the IMDB-BINARY 

and IMDB-MULTI datasets, 6 times more time is needed to calculate the truss variants than the base 
kernels. One issue of interest is that the WL variant has a relatively larger runtime ratio than the other 

Table 3. 
Values of the hyperparameters of the graph kernels used in our experiments

Kernels Hyperparameters

GR k n
sample

� � , , , � � , , 3 4 5 150 200 500{ } { }

WL h � � , , , , , 1 2 3 4 5 6{ }

NH h � � , , , , , 1 2 3 4 5 6{ }

SP -

PM d L� � , , , ,� � � , , 4 6 8 10 2 4 6{ } { }



Journal of Database Management
Volume 34 • Issue 1

12

three methods. The intuition is that WL kernel method may compute the kernel matrix significantly 
faster than other methods. The authors counted the longest and shortest time for the five graph kernels 
to compute the kernel matrix over the entire graph (i.e., 2-truss) on the ENZYMES dataset, with the 
values of the hyperparameters of the graph kernels set to the maximum and minimum values of the 
chosen parameter range. Since SP has no hyperparameters, it has only one computation time. Figure 
3 shows the result which is in line with the authors’ intuition. The calculation time for SP is also 
relatively short. In general, the additional computational cost is acceptable because the accuracy rate 
will increase accordingly.

Overall, the truss variants perform better on the social network datasets compared to the 
bioinformatics and cheminformatics datasets. To investigate the reason, the authors studied the degree 
distribution of the datasets, as shown in Figure 4. One notable difference between social network and 
chemoinformatics/bioinformatics datasets is that the former follows the power-law distribution 
common in nature and social life, while the latter does not. In Figure 4, the social network datasets 
exhibit significant long-tail characteristics. Since REDDIT-BINARY and REDDIT-MULTI-5K 
datasets have a degree distribution interval greater than two thousand, the authors use the logarithmic 
axes to show their degree distribution. For these datasets, it is assumed that the higher-order trusses 

Table 4. 
Comparison of classification accuracy (± standard deviation) of the graphlet kernel (GK), shortest-path kernel (SP), Weisfeiler-
Lehman kernel (WL), pyramid match kernel (PM), neighborhood hash kernel (NH), to their truss variants on 12 graph 
classification datasets

　 MUTAG PTC-MR ENZYMES PROTEINS NCI1 NCI109

GR 78.51 ±1.86 56.1 ± 1.1 22.09 ± 1.39 71.25 ± 0.45 61.33 ± 0.28 61.32 ± 0.24

Truss GR 78.78 ±2.07 56.32 ± 1.11 22.06 ± 1.41 72.99 ± 0.44 61.66 ± 0.2 61.61 ± 0.34

SP 80.43 ±2.84 59.53 ± 1.87 40.85 ± 1.52 75.72 ± 0.66 72.36 ± 0.28 72.56 ± 0.32

Truss SP 80.66 ±2.01 59.98 ± 1.63 42.9 ± 2.3 76.4 ± 0.4 72.29 ± 0.25 72.46 ± 0.3

WL 82.22 ±2.36 61.39 ± 1.86 50.48 ± 1.33 74.61 ± 0.57 81.68 ± 0.24 81.64 ± 0.24

Truss WL 82.16 ± 2.3 61.49 ± 2.07 49.89 ± 1.35 74.87 ± 0.51 81.56 ± 0.23 81.55 ± 0.21

PM 83.56 ± 1.98 57.43 ± 1.96 39.89 ± 1.44 73.68 ± 0.64 69.88 ± 0.4 68.97 ± 0.47

Truss PM 83.74 ± 2.14 57.49 ± 1.74 43.68 ± 1.33 75.02 ± 0.69 70.3 ± 0.39 69.38 ± 0.4

NH 85.85 ± 2.08 59.3 ± 1.74 52.77 ± 0.95 74.96 ± 0.6 83.74 ± 0.27 82.97 ± 0.29

Truss NH 85.66 ± 2.06 60.52 ± 2.03 51.46 ± 1.0 74.74 ± 0.55 83.52 ± 0.3 83.13 ± 0.28

IMDB-
BINARY

IMDB-
MULTI

REDDIT-
BINARY

REDDIT-
MULTI-5K

SYNTHETI
Cnew Synthie

GR 61.22 ± 1.01 39.37 ± 0.82 73.85 ± 0.25 33.24 ± 0.19 45.12 ± 2.33 31.12 ± 1.76

Truss GR 70.9 ± 0.88 48.58 ± 0.6 75.86 ± 0.39 42.3 ± 0.27 57.07 ± 2.04 48.54 ± 1.77

SP 72.23 ± 0.77 51.2 ± 0.83 87.21 ± 0.24 51.66 ± 0.13 81.73 ± 0.87 49.12 ± 2.46

Truss SP 72.31 ± 0.62 50.53 ± 0.47 87.41 ± 0.15 51.69 ± 0.17 83.33 ± 0.82 52.62 ± 1.68

WL 72.46 ± 0.76 50.9 ± 0.46 70.15 ± 0.78 49.46 ± 0.33 97.77 ± 0.36 50.09 ± 1.9

Truss WL 71.69 ± 1.35 51.03 ± 0.56 70.52 ± 0.76 49.93 ± 0.27 96.96 ± 0.6 49.73 ± 2.34

PM 73.04 ± 1.07 50.17 ± 0.57 83.82 ± 0.45 50.36 ± 0.38 65.13 ± 2.16 48.08 ± 2.09

Truss PM 73.89 ± 0.9 50.33 ± 0.59 85.0 ± 0.58 51.03 ± 0.28 71.71 ± 1.66 49.37 ± 2.06

NH 66.24 ± 0.92 47.67 ± 0.41 85.49 ± 0.38 50.64 ± 0.24 96.15 ± 0.44 46.3 ± 2.46

Truss NH 69.1 ± 0.8 48.02 ± 0.51 84.4 ± 0.38 51.07 ± 0.31 92.48 ± 0.49 49.48 ± 1.66
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of the graphs capture the most representative areas of the graphs. Conversely, graphs similar to 
bioinformatics datasets may lead to low truss degeneracies, and many nodes may end up with the 
same truss value. The basic structural differences between datasets may be a very plausible reason 
for the greater accuracy improvements in social network datasets compared to chemoinformatics or 

Figure 2. 
Comparison of running time for kernel matrix computation of base kernels vs their truss variants. The values represent the ratio 
of running time of truss variants to the basic kernels. Some dataset names have been abbreviated. The cross indicates the 
w
avg
G* ( )  of the dataset

Figure 3. 
Running time of the five base kernels on the entire graph (i.e., 2-truss) of the ENZYMES dataset with the values of the 
hyperparameters of the graph kernels set to the maximum and minimum values of the chosen parameter range
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bioinformatics datasets. For synthetic datasets, SYNTHETICnew and Synthie have very different 
degree distributions, with the latter being closer to the social network datasets. Truss GR improves 
accuracy by over 15%  on the Synthie dataset, truss SP, truss PM and truss NH all improve accuracy 
to a certain extent. The framework is proved to be also effective on symmetric datasets and performs 
better on the Synthie. 

Finally, the authors choose the IMDB-BINARY dataset and compare the execution of GR and 
its truss variant on a part of the whole range of k-trusses on the IMDB-BINARY dataset. For 
k ∈ { }2 20,..., , the GR kernel and its truss variant are computed to perform graph classification. The 
authors compare the achieved classification accuracies, and the results are in Figure 5. It is noted that 
the truss variant obtains a higher accuracy compared to GR. In particular, the accuracy of GR drops 
to a minimum of around k = 15 while the accuracy of truss GR remains high. The accuracy of truss 
GR gradually increases in the interval of k values, which is in line with our expectations. Consistent 
conclusions can be drawn on other data sets, which are omitted here.

Figure 4. 
Degree distribution of the datasets. Both axes of the figures of REDDIT-BINARY and REDDIT-MULTI-5K are logarithmic

Figure 5. 
Classification accuracy of GR and its truss variant for k -trusses on the IMDB-BINARY dataset for k ∈ { }2 20,...,
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DISCUSSIoNS

This paper proposes a framework for comparing graphs at multiple different scales, which applies to 
any graph similarity algorithm. The framework capitalizes on the well-known k-truss decomposition 
of graphs to build a hierarchy of nested subgraphs. For existing base graph kernels, the framework 
generates efficient truss variants, enhances the ability of the base graph kernels to represent complex 
substructures, and improves the performance of the base graph kernel on graph classification tasks. 
The authors evaluate the performance of the framework on a set of benchmark datasets for graph 
classification tasks. In most cases, the truss variants perform well and achieve greater improvements 
over the base kernel, while their time complexity remains very attractive.

The framework is a powerful tool for improving the performance of graph kernels and can be 
applied to any graph comparison algorithm. The truss variants of graph kernels generated by the 
framework perform well on graph classification tasks and can be used in a wide range of applications 
such as chemical bioinformatics, cyber security, computer vision, and many others. For example, 
in biochemical information, the properties and functions of a substance can be predicted based on 
the similarity of the structure to substances with known functions; in cyber security, unknown code 
samples are compared with known malware samples and clean code to detect malware; in computer 
vision, images can be classified, especially in biomedical imaging, to distinguish between different 
brain states and predict whether a person has a certain disease or not.

CoNCLUSIoN

In this article, the authors propose a framework that enhances the performance of graph kernels, which 
uses truss decomposition to allow existing algorithms to compare graphs at different scales. Extensive 
experiments demonstrate the improvement of the truss variants over the basic graph kernels in terms 
of graph classification accuracy with a relatively small increase in time complexity.
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